American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 8 / Number 1P2A

Progress in Inertial Fusion at LLNL

Erik Storm

Fusion Science and Technology / Volume 8 / Number 1P2A / July 1985 / Pages 189-197

Result from the Current Experimental Program / Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) / dx.doi.org/10.13182/FST85-A40045

Experiments at LLNL using the 10 TW Novette laser have led to significantly increased understanding of laser/plasma coupling. Tests using 1.06 µm, 0.53 µm and 0.26 µm light have shown increased light absorption, increased efficiency of conversion to x-rays, and decreased production of suprathermal electrons as the wavelength of the incident light decreases. The data indicate that stimulated Raman scattering is the source of the excessive hot electrons and that the effect can be controlled by the proper selection of laser frequency and target material. The control of these effects has led to achievement of higher inertial fusion target compressions and to production of the first laboratory x-ray laser.