Fusion Science and Technology / Volume 68 / Number 2 / September 2015 / Pages 362-367
Technical Paper / Proceedings of TOFE-2014 / dx.doi.org/10.13182/FST14-936
Articles are hosted by Taylor and Francis Online.
In this paper the problem of tritium transport in PbLi (Lead-Lithium) blankets has been studied and analyzed by means of our recently developed computational models. Several simulations are performed by incorporating the geometric configurations of the PbLi blankets including both DCLL (Dual Coolant Lead Lithium) and HCLL (Helium Cooled Lead Lithium) blankets. Tritium permeation loss percentage from the HCLL concept is about one order of magnitude higher than from the DCLL concept (~ 17%. vs. 1.2%). Sensitivity study also shows that the most relevant factors on tritium permeation are: 1) the level of tritium solubility in PbLi, 2) the gap velocity of the liquid metal in a DCLL blanket, 3) Hartmann number, and 4) the FCI (Flow Channel Insert) electrical conductivity.