American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 28 / Number 3P2

Model for Hydrogen Retention, Reemission and H/He Exchange in Beryllium Under Ion Irradiation

M.A. Lomidze, A.E. Gorodetsky, A.P. Zakharov

Fusion Science and Technology / Volume 28 / Number 3P2 / October 1995 / Pages 1211-1216

Tritium Properties and Interaction with Material / Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 / dx.doi.org/10.13182/FST95-A30574

In the model two states for accumulated hydrogen (soluble and molecular) are suggested. Under ion irradiation three reactions (events) take place: recombination of soluble hydrogen on irradiated surface; accumulation of molecular hydrogen; molecular percolation. The first reaction describes recombination under and after irradiation. The second reaction describes molecular hydrogen accumulation as statistical packing of the “traps”. The third one describes molecular percolation as a capturing of one more incoming particle in already packed “trap”, that is accompanied by the reemission of H2, by the devastation of the “trap”, and by the increasing of the irradiated surface. Under steady state for molecular accumulation and surface formation, recombination flux approaches the value of incoming flux and no percolation acts take place. Molecular accumulation approaches the steady state prompter than surface formation. The cross sections for (helium/hydrogen) emission changing over hydrogen to helium beam and vice versa were calculated. Simulation of the model coincides with the experimental data of hydrogen retention, reemission, and post-implanted release.