American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 28 / Number 3P1

Compact Toroid Fueling for ITER

P. Gierszewski, R. Raman, D. Hwang

Fusion Science and Technology / Volume 28 / Number 3P1 / October 1995 / Pages 619-624

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 / dx.doi.org/10.13182/FST95-A30472

Experimental and theoretical work indicates that deep fueling of ITER may be possible by Compact Toroid (CT) injection. CT velocities sufficient for center fueling of a reactor have been demonstrated in the RACE device. CT injections into the TdeV tokamak have achieved central penetration at 1.4 T, and have increased the particle inventory by more than 30% without disruption. Tests on the MARAUDER device have achieved CT mass-densities suitable for injection into 5 T tokamaks. Techniques for producing multiple-shot CTs with passive electric switching are being tested on CTIX. The advantages of deep fueling by CT injection include profile peaking to reach ignition, profile control, low tritium inventory and others. In this paper, the CT experimental results are summarized, a conceptual design of a CT fueler for ITER is presented, and the implications on ITER operation and fuel cycle are discussed.