American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 25 / Number 4

Initial Boronization of PBX-M Using Ablation from Solid Boronized Probes

H. W. Kugel, Y. Hirooka, J. Timberlake, R. Bell, A. England, R. Isler, S. Jones, R. Kaita, S. Kaye, M. Khandagle, M. Okabayashi, S. Paul, H. Takahashi, W. Tighe, S. Von Goeler, A. Post-Zwicker

Fusion Science and Technology / Volume 25 / Number 4 / July 1994 / Pages 377-387

Technical Paper / Plasma Engineering / dx.doi.org/10.13182/FST94-A30244

Boronization was performed by plasma ablation of two solid boronized target probes. Probe-1, in a mushroom shape, consisted of a 10.7% boronized two-dimensional carbon-carbon composite containing 3.6g of boron in a B4C binder. Probe-2, in a rectangular shape, consisted of an 86% boronized graphite felt composite containing 19.5 g of 40-μm boron particles. Probe-1 boronization deposited ∼26 monolayers of boron. After boronization with Probe-1, the loop voltage in 1-MW neutral-beam-heated plasmas decreased 27%, and volt-second consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of ∼5. The central oxygen density decreased 15 to 20%. Carbon levels initially increased during boronization but were significantly reduced after boronization. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization deposited ∼70 monolayers. Probe-2 boronization exhibited similar improved plasma conditions, but for some parameters, a smaller percentage change occurred because of the previous boronization with Probe-1. The ablation rates of both probes were consistent with front-face temperatures above the boron melting point. The results demonstrate the performance of two different boronized probe materials and the relative simplicity and effectiveness of solid target boronization as a convenient, real-time impurity control technique.