American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 19 / Number 3P2B

Application Study of Laser Raman Spectroscopy to In Situ Gas Analysis for Fusion Fuel Processing Systems

T. Uda, K. Okuno, S. O'Hira, Y. Naruse

Fusion Science and Technology / Volume 19 / Number 3P2B / May 1991 / Pages 1651-1656

Material and Tritium / Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) / dx.doi.org/10.13182/FST91-A29578

To study the application of laser Raman spectroscopy to analysis fusion fuel processing gas, six hydrogen isotopes were experimentally measured. Raman spectra of these mixture gases showed that the useful lines for quantitative analysis are Stokes rotations below 1000 cm−1, with representative lines for H2, HD, D2, HT, DT and T2 being 587, 443, 415, 395, 250 and 200 cm−1 respectively. The absolute Raman intensity ratio was estimated as H2:HD:D2:HT:DT:T2 = 100:58:47:46:36:41. With the laser wavelength of 488 nm, power of 700 mW and using a multiple pass system, the detection limit for H2 was 10 Pa, which was the equivalent of 100 ppm in concentration. As a remote sensing technology, the optical fiber was verified as applicable for transferring the irradiation laser beam.