American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 14 / Number 2P2A

Pyrophoricity of Tritium-Storage Bed Materialsa

G. R. Longhurst

Fusion Science and Technology / Volume 14 / Number 2P2A / September 1988 / Pages 750-755

Tritium Properties and Interactions with Material / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) / dx.doi.org/10.13182/FST88-A25225

Experiments were conducted on samples of depleted uranium and on intermetallic compounds of zirconium-cobalt and lanthanum-nickel-aluminide to evaluate the pyrophoricity of the activated materials and their hydrides and deuterides on exposure to air. None of the materials spontaneously ignited when exposed to room temperature air, but the uranium and the zirconium-cobalt both ignited in air at moderately elevated temperatures. Activated (dehydrided) materials ignited at essentially the same temperatures. Deuterides showed effectively the same characteristics as the hydrides except the ignition temperature of zirconium-cobalt deuteride was reduced by 20–50 K from that of the hydride. The pyrophoricity of these materials raises concern about the possibility of fires in tritium-storage beds with attendant damage to the bed and dispersal of tritiated debris, but fires may not occur until the bed is heated.