American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 14 / Number 2P2A

Experimental Apparatus for Tritium Permeation Studies in Tritium Process Laboratory

Kenji Okuno, Shigeru O'hira, Hiroshi Yoshida, Yuji Naruse, Tatsushi Suzuki, Shingo Hirata, Masahiro Misumi

Fusion Science and Technology / Volume 14 / Number 2P2A / September 1988 / Pages 713-718

Tritium Properties and Interactions with Material / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) / dx.doi.org/10.13182/FST88-A25218

An experimental apparatus has been developed to carry out tritium permeation experiments for candidate first-wall materials subjected to a high flux of low energy tritium ions, and installed in a glovebox. The experimental apparatus consists of five main systems; (1) a tritium ion source with energies variable from 20 to 1400 eV, (2) a main chamber system for directing an ion beam onto a heated target and for measuring various implantation-related experimental parameters by means of SIMS and AES, (3) a downstream system for measuring the permeated tritium through the target specimen by means of QMS, (4) a tritium supply and recovery system and (5) evacuation system. Operational tests with the system have yielded deuterium ion-beam with more than 90% deuterons and intensities from 2x1015 D+/cm2s at 200 eV to greater than 3x1015 D+/cm2s at 1000 eV. The energy width of the ion beam was about 10% of the beam energy ranging from 100 to 1400 eV. Baseline pressure as low as 9x10−9 Torr and 1x10−9 Torr have been achieved in the main chamber and downstream system, respectively.