American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 6 / Number 2P2

Surface Erosion Effects of Candidate Fusion Materialsa

B. Navinsek

Fusion Science and Technology / Volume 6 / Number 2P2 / September 1984 / Pages 491-498

Technical Paper / Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) / dx.doi.org/10.13182/FST84-A23226

Some candidate fusion materials such as nickel-base alloys and graphites were studied, because of their importance as first wall components in CTR devices. Polycrystalline samples of Inconel 600, Inconel 625, Nimonic alloy PE 16, nuclear grade graphite ATJ and pyrolytic graphite were investigated. Results for surface damage and topography, blistering, flaking, ion erosion and sputtering yields are reported for irradiations with low energy He+ ions (5–12 keV) at room temperature, using total ion doses up to 2×1019 ions cm−2. SEM, TEM and AES analyses were used to identify surface damage, structure and compositional changes after irradiation. Comparative studies of the ion erosion yield of nickel-base alloys, as measured by the step-height technique, were made. Total sputtering yields were determined dynamically for sputtered films of these alloys using a quartz crystal microbalance. The yields were studied as a function of ion dose, energy and surface roughness.