American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 6 / Number 2P2

In Situ Cleaning of Probe Surfaces by Pulsed Laser Heating

J. A. Tagle&, A. Pospieszczyk

Fusion Science and Technology / Volume 6 / Number 2P2 / September 1984 / Pages 405-410

Technical Paper / Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) / dx.doi.org/10.13182/FST84-A23213

Inconel 600,Inconel 625 and austenitic steel (AISI 304LN) surfaces were cleaned in UHV by laser pulses of 1J total energy. Residual surface contamination layers were dissociated and desorbed. The surface cleanness degree reached was equivalent to that obtained by conventional cleaning techniques like bulk heating and sputtering by ion bombardment. A comparison between these three techniques is presented. The laser cleaning efficiency was found to be strongly dependent on the initial surface contamination degree and on the residual gas composition. In particular the effect of laser shots on the activation of the surface oxidation process at ambient pressures of about 10−9 mbar of CO was studied. The possibilities of using the laser heating technique as a tool in plasma edge diagnostic (in situ cleaning of probes,analysis of trapped particles, redeposition measurements,…) in fusion devices is discussed.