American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 4 / Number 2P3

The Influence of Steel Type on the Activation and Decay of Fusion Reactor First Walls

J. A. Blink, G. P. Lasche

Fusion Science and Technology / Volume 4 / Number 2P3 / September 1983 / Pages 1146-1151

Environment and Safety / dx.doi.org/10.13182/FST83-A23013

Five steels (PCA, HT-9, thermally stabilized 2.25 Cr-1 Mo, Nb stabilized 2.25 Cr-1 Mo, and 2.25 Cr-1 V) are compared as a function of time from the viewpoints of activation, afterheat, inhalation biological hazard potential (BHP), ingestion BHP, and feasibility of disposal by shallow land burial. An additional case uses the 2.25 Cr-1 V steel with a liquid metal wall (LMW) protective shield between the neutron source and the wall. (This geometry is feasible for inertial confinement fusion reactors.) The PCA steel is the worst choice and the LMW protected 2.25 Cr-1 V is the best choice by substantial margins from all five viewpoints. The HT-9 and two versions of 2.25 Cr-1 Mo are roughly the same at intermediate values. The 2.25 Cr-1 V has about the same afterheat as those three steels, but its waste disposal feasibility is considerably better. Under NRC's proposed low level waste disposal rule (10CFR61), only the 2.25 Cr-1 V could be considered low level waste suitable for shallow land burial.