American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 4 / Number 2P1

Optimization of Steady-State Beam-Driven Tokamak Reactors

David R. Mikkelsen, Clifford E. Singer

Fusion Science and Technology / Volume 4 / Number 2P1 / September 1983 / Pages 237-252

Technical Paper / Special Section Content / Fusion Reactor / dx.doi.org/10.13182/FST83-A22816

Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of ß and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically Te ≃ 12 to 15 keV and Ti≃ 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for Eb ≾ 400 keV, but rises only slowly above Eb ∼ 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to ≾85% of that allowed in steady-state reactors.