American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 41 / Number 3P2

Tritium Release from Silica Glass

T.Tanifuji, S. Jitsukawa, S.Nasu, A.Moon, K.Mori, S.Nishikawa, M.Yamanaka, Y.Izawa

Fusion Science and Technology / Volume 41 / Number 3P2 / May 2002 / Pages 954-957

Material Interaction and Permeation / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 / dx.doi.org/10.13182/FST02-A22726

We investigated tritium (T) release behavior from silica glass. The specimens were 8 kinds of commercially available silica glass. T was injected by the 6Li (n,α)T reaction of sintered pellets of lithium oxide (Li2O) into the silica glass with thermal neutrons in JRR-2 (VT-8) up to 5 × 1018 neutrons/cm2 at ambient temperature (about 350 K). After irradiation, the Li2O pellets were removed from the silica glass, and T release from the silica glass was measured in a flow of hydrogen (H2) or ammonia (NH3) sweep gas at atmospheric pressure at a constant heating rate of 2 K/min between 675 K and 1375 K with a proportional counter. In the case of H2 sweep gas, a maximum tritium release rate was observed around 1023 K, while in the case of NH3 sweep gas, two peaks around 1023 K and around 1123 K or a peak around 1123 K with a shoulder were obserbed. After the experiments of T release, FT-IR spectra showed a decrease of SiOH bands at 3650 cm−1. On the other hand, no changes in intensities at 2250 cm−1 due to SiH were observed for both samples before and after T release.