Fusion Science and Technology / Volume 64 / Number 3 / September 2013 / Pages 582-586
Nuclear Systems: Analysis and Experiments / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 / dx.doi.org/10.13182/FST13-A19155
Articles are hosted by Taylor and Francis Online.
Just recently, the ARIES team completed the detailed design of ARIES-ACT-1 with aggressive physics and advanced SiC technology. The ability of the SiC/LiPb blanket to provide tritium self-sufficiency was among the important issues investigated in detail. To pinpoint the design elements that degrade the breeding the most, we developed a novel stepwise approach that involves building the CAD model from scratch, and, in multiple steps, adding the internals/externals of the blanket. At each step, the impact on the tritium breeding ratio (TBR) was recorded to identify the more damaging/enhancing conditions or changes to the tritium breeding. The TBR approaches 1.8 for an ideal system, and then degrades to 1.05 for the ARIES-ACT-1 reference design. This paper sheds light on several breeding-related issues that puzzled the fusion community for decades and gives insight about the impact on TBR of the individual blanket internals as well as other essential parts of the tokamak.