American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 64 / Number 2

Divertor Cooling with Sub-Channels-Inserted Metal Porous Media

Kazuhisa Yuki, Hidetoshi Hashizume, Saburo Toda, Akio Sagara

Fusion Science and Technology / Volume 64 / Number 2 / August 2013 / Pages 325-330

Divertor and High-Heat-Flux Components / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 / dx.doi.org/10.13182/FST13-A18098

This study evaluates heat transfer characteristics of a sub-channels-inserted (SCI) porous heat removal device for divertor cooling. It is clarified that increasing the total volume of the sub-channels strongly contributes to the enhancement of phase-change of coolant as well as the vapor discharge. A high heat flux of approximately 25 MW/m2 is removed at a wall superheat less than 70 K by increasing the number of the sub-channels installed under low flow rate conditions. The results also suggest that the SCI porous heat removal device could be applicable for the divertor cooling by optimizing the sub-channel design. Furthermore, especially for an enlarged heating area, optimizing the location of the sub-channel inlet, that is the interval of each sub-channel inlet, could be essential in order to smoothly discharge the generated vapor outside the porous medium.