American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 52 / Number 4

Molecular Dynamics Simulations of Bubble Formation and Cavitation in Liquid Metals

Z. Insepov, A. Hassanein, T. T. Bazhirov, G. É. Norman, V. V. Stegailov

Fusion Science and Technology / Volume 52 / Number 4 / November 2007 / Pages 885-889

Technical Paper / First Wall, Blanket, and Shield / dx.doi.org/10.13182/FST07-A1605

Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly streched region of the liquid phase diagram; and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-270°K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory.