American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 38 / Number 2

Evidence for Low-Intensity D-D Reaction as a Result of Exothermic Deuterium Desorption from Au/Pd/PdO:D Heterostructure

A. G. Lipson, B. F. Lyakhov, A. S. Roussetski, T. Akimoto, T. Mizuno, N. Asami, R. Shimada, S. Miyashita, A. Takahashi

Fusion Science and Technology / Volume 38 / Number 2 / September 2000 / Pages 238-252

Technical Paper / dx.doi.org/10.13182/FST00-A145

Low-intensity nuclear emissions (neutrons and charged particles) due to exothermic deuterium desorption from Au/Pd/PdO heterostructure loaded with deuterium by electrolysis have been studied by NE213 neutron detection as well as SSB and CR-39 charged-particle detectors in low-background conditions with large statistics. Similar measurements were performed with the Au/Pd/PdO:H heterostructure as a control. It has been established that in experiments with the Au/Pd/PdO:D system, the excessive 2.45-MeV neutrons and 3.0-MeV protons are better detected than with the Au/Pd/PdO:H system, where those detection rates for n and p did not exceed the cosmic background level. The levels of neutron and proton emissions for 40- to 60-m-thick samples are found to be close to one another and after subtracting background (Au/Pd/PdO:H count rate) consist of In = (19 ± 2)10-3 n/s and Ip = (4.0 ± 1.0)10-3 p/s in a 4 solid angle, respectively. These yields of D-D reaction products in Au/Pd/PdO heterostructure comply with the mean D-D reaction rate of dd ~ 10-23s-1 per D-D pair.