Fusion Science and Technology / Volume 60 / Number 2 / August 2011 / Pages 473-479
Plasma Engineering - Fueling and Diagnostics / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) / dx.doi.org/10.13182/FST60-473
Articles are hosted by Taylor and Francis Online.
A special single-shot pellet injection system that produces and accelerates large cryogenic pellets (~16mm diameter and composed of D2 or Ne) to relatively high speeds (>300 and 600 m/s, respectively) was previously developed at the Oak Ridge National Laboratory. Subsequently, a similar system was installed on DIII-D and used successfully in disruption mitigation experiments. To circumvent some operational issues with injecting the large Ne pellets, a technique has been developed in which a relatively thin layer (0.1 to 1.0 mm) of D2 is frozen on the inner wall of the pipe-gun barrel, followed by filling the core with solid Ne.A fast solenoid valve operating with a light gas (H2 or He) at relatively high pressure (~70 bar) provides the force necessary to break away the dual-layer pellet and accelerate it. The technique and the initial laboratory tests are described, as well as the implementation and operational issues for fusion experiments.