
LETTERS TO THE EDITOR 

COMAAENTS O N "THE UNCERTAINTY I N 
ACCIDENT CONSEQUENCES CALCULATED 
BY LARGE CODES DUE TO UNCERTAINTIES 
I N INPUT' " 

We would like to make some comments on Ref. 1. It is 
our belief that certain errors in the paper have led the 
author to an erroneous result. 

One of his principal conclusions is that the probability 
distribution of calculated accident consequences is quite 
sensitive to the precise shapes of the input distributions, 
even when input means and standard deviations are assumed 
known. This conclusion, if true, would greatly reduce the 
value of many probabilistic analyses. This is because, in 
practice, there are rarely enough data available to decide 
whether a given input should be assigned, for example, a 
uniform or a normal distribution. Often the best that can 
be done is to provide a reasonable estimate of the mean 
and standard deviation and some justification for the 
general shape assumed (symmetric, skewed, etc.). 

The basis for the author's conclusion is Fig. 3 of Ref. 1. 
However, there are serious discrepancies between Fig. 3 and 
Eqs. (14) and (15), on which it is ostensibly based. Consider 
Eq.(14): 

pix) = KiCo + C i x r exp(-x/C,) 

where 

K = 1.369 

Co = 0 . 9 8 3 3 

C, = 0.1639 

w = 35.61. 

The heavy line in Fig. 3 cannot be the graph of p{x), as we 
see by plotting a few points. Next, the value of the nor-
malization constant K, given by the author, is not correct. 
The true value is 

K = exp(Co/C?)r(M + 1)]"' = 0.73 . 
However, even when the correct value of K is used, we do 
not obtain the author's graph. Indeed, the (correctly nor-

malized) density function p(x) has a standard deviation 
of C,(M + l)"^ = 0.992, which is clearly incompatible with 
Fig. 3. Similar remarks apply to Eq. (15). 

To obtain some insight into the problem, we performed 
two 5000-run Monte Carlo simulations using the response 
surface [Eq. (13)] of the paper. We employed the input 
variable distributions assigned by the author in Table IV 
and following his Eq. (5), assumed a mean of 0 and standard 
deviation of 1 for each. The calculated distributions are 
shown in Figs. 1 and 2. The difference between the two 
distributions is slight, and the 95% confidence intervals 
for both cases are about equal. 

This computational result is supported by more theoret-
ical considerations. The response surface [Eq. (13)] consists 
principally of a reasonably large number of linear terms 
whose distributions are assumed symmetric and unimodal 
about 0. There is, therefore, a strong expectation that the 
response distribution is normal or nearly so. In other 
words, one does not expect the precise type of symmetric 
unimodal distribution assigned, whether uniform or normal 
or whatever, to have an important influence on the response 
distribution. Moreover, the intuitive explanation given by 
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Fig. 1. The probability density function (pdf) of time-to-failure for 
mixed input, based on 5000 Monte Carlo runs. 



2.5 

p W n H l l l l i l 
-0.5 

Fig. 2. 

i M k , 
0.5 

The pdf of time-to-failure for uniform input, based on 5000 
Monte Carlo runs. 

the author for the difference between the graphs in Fig. 3 
(namely, that "a uniform distribution is narrower than a 
normal distribution with the same standard deviation") 
is not convincing. To the contrary, see Fig. 3 of this Letter; 

the normal distribution is actually the more peaked of the 
two and, indeed, has the larger kurtosis (3 as compared 
to 1.8). Thus, if anything, one would expect the output 
distribution for "mixed" input to be somewhat more 
sharply peaked than that for "uniform" input. Comparison 
of Figs. 1 and 2 reveals such an effect. Its minor nature, 
however, only reinforces our conclusion that the output 
distribution is not particularly sensitive to the precise shapes 
of the input distributions. 

In conclusion, we can only speculate as to the source 
of the errors described. The method of second-order error 
propagation, followed by moment matching to a member 
of a prescribed family of distributions, does not seem 
especially suited for use in this study. Its application in-
volves the assumption that two distributions with the same 
first four moments do not differ substantially. However, it 
is well known that a distribution may not be determined 
even by its entire infinite sequence of moments. This is 
by no means merely a theoretical possibility, since the 
popular log-normal distribution is a case in point (see 
Fig. 4). Moreover, it is not easy to measure the size of 
the potential errors that can be introduced by the method. 
The Monte Carlo method for calculating output distribu-
tions seems preferable in this type of study for two reasons. 
First, it is simpler and more flexible. Second, one can easily 
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Fig. 3. Normal and uniform densities each with standard deviation of 1. 
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Fig. 4. Two different p d f s with the same moments. 
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obtain confidence bounds for any quantity of interest, and 
uncontrollable sources of error are thereby avoided. 

David C. Cox 
PaulBaybutt 

Robert E. Kurth 

Battelle Columbus Laboratories 
Nuclear and Flow Systems Section 
505 King Ave. 
Columbus, Ohio 43201 

July 11, 1980 

reference 

1. DONG H. NGUYEN, "The Uncertainty in Accident Consequences 
Calculated by Large Codes due to Uncertainties in Input," Nucl. 
rec/ino / . ,49 ,80(1980). 

REPLY TO " C Q M M t N T S O N THE UNCERTAINTY 
IN ACCIDENT CONSEQUENCES CALCULATED 
BY LARGE CODES DUE TO UNCERTAINTIES 
IN INPUT' " 

The critique of Cox et al.' of my paper^ can be sum-
marized as follows: 

1. There are discrepancies between Fig. 3 and Eqs. (14) 
and (15). 

2. The probability density functions (pdfs) of the 
calculated output for the two cases considered in 
my paper (inputs with all uniform distributions and 
inputs with mixed uniform-normal distributions) 

should not differ significantly. The source of error 
was speculated to originate from the methods of 
error propagation, followed by moments matching 
to a member of a prescribed family of distributions. 

3. In general, "the output distribution should not be 
particularly sensitive to the precise shapes of the 
input distributions." 

Concerning the first point, it is recalled that in my 
work, the second-order error propagation was calculated 
by the program SOERP (Ref. 3), yielding the mean, the 
variance, and the coefficients of skewness and kurtosis. 
These properties were then used in the program PDFPLOT 
(Ref. 4) to match a theoretical distribution or a member 
of an empirical family of distributions. The PDFPLOT 
performed intermediate calculations using standardized 
random variable (mean = 0, variance = 1), then rescaled 
back to the actual random variable for plotting. The dis-
crepancies between Fig. 3 and Eqs. (14) and (15) in Ref. 2 
are caused by the fact that the constants given following 
these equations are for the standardized, not for the actual, 
variable, while Fig. 3 shows unnormalized distributions of 
the actual variable. Also, the normalization constant should 
be ^ = 1/1.369. For the given sets of inputs, PDFPLOT 
calculated the correct distributions, the discrepancies being 
caused by an inconsistency on my part. But, this is not a 
very important problem. 

The major critique is in the shapes of the distributions 
shown in Fig. 3 of Ref. 2. The basic argument that the 
output distributions resulting from two sets of inputs, each 
having symmetric unimodal, although different, distribu-
tions should not differ significantly appears plausible. 
Therefore, the details of the calculations were carefully 
reviewed and an error was found in the inputs to SOERP 
for the moments of the standardized rectangular distribu-
tion. The central moments Hr of the distribution 




