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lent to a linear integral equation with a symmetrical kernel, 
and the property of the system which is being evaluated is 
the average value of <f> weighted by the inhomogeneous term 
A\(x) in the integral equation. 

Imposing the two restrictions (a) and (b) has evidently 
limited us too greatly; while many physical systems admit 
of a description in terms of linear equations (which can 
always be written formally as an integral equation), they 
will generally involve unsymmetric kernels. Furthermore, 
while a weighted average of the state function is frequently 
of interest, one would like to be able to choose the weight 
function arbitrarily. 

To overcome this difficulty, let us consider the possible 
descriptions, which admit the superposition principle and 
hence satisfy linear equations, of a scattering and absorbing 
medium in which neutrons are diffusing. (These considera-
tions will also apply to more general physical systems.) 
One class of descriptions may be characterized as prob-
ability density distributions: the simplest example is the 
neutron density per unit phase space volume, but other 
possibilities are the flux, the absorption rate, and the 
collision rate. All of these descriptions are essentially 
equivalent since the calculation of any one from another is 
trivial. On the other hand, there is a second class of descrip-
tions which may be characterized as probability distribu-
tions that a neutron at a given point in phase space will 
eventually undergo a particular process: for example, the 
probability of being absorbed, of escaping from the system, 
or of producing a second generation by causing a fission. 
While the members of this class are again essentially equiva-
lent, it is usually not possible to obtain a description of 
one class from a description of the other class without solv-
ing again the equation defining the system. 

We suppose, therefore, that for the case of a general linear 
system, the functional we are trying to evaluate will depend 
on a member of the second class of probability distribu-
tions, which we will denote by <j>+, as well as on a probability 
density distribution <f>. As before, we can expand in a func-
tional power series in both arguments and again terminate 
the series after the first term that leads to a nontrivial 
result: 

F[<t>+, <j>] = A0 + J dxAi+(x)(f>(x) + J dxAi(x)<f>+(x) 
(6) 

Imposing the requirements of simplicity and insensitivity 
on the calculation of a functional which depends on the two 
classes of state descriptions (probabilities and probability 
densities) implies that the theory describing the system 
must be in the form of a linear functional equation with no 
restrictions on the kernel, and that the class of functionals 
which can be computed in such theories consists of linear 
averages of the state description with an arbitrary weight 
function. 

A restatement of this result is that the functional (6), 
regarded as dependent on two unknown functions <f> and 
is stationary in the neighborhood of the exact solutions and 
therefore constitutes a variational principle for Eqs. (7) 
and (8). It will provide an estimate of an arbitrary weighted 
average of the state function <£, provided that the weight 
function A{^(x) is chosen as the inhomogeneous term of 
Eq. (8), which is recognized as the adjoint to Eq. (7). This 
is, in fact, just the functional proposed by Roussopoulos 
from formal considerations; the preceding discussion con-
stitutes its derivation from the properties (a) and (b), which 
one can regard as plausible requirements to impose on a 
theory. 

It is also clear from the preceding derivation that the 
functional F can be regarded as a Lagrangian for the theory, 
since the statement that F is stationary with respect to 
arbitrary small variations of its arguments permits us to 
deduce Eqs. (7) and (8) from the functional. Consequently, 
the procedure outlined here enables one to take a given 
linear theory and immediately write down a Lagrangian 
whose stationary property is equivalent to the equations 
of the theory, and which, at the same time, constitutes a 
variational principle for the estimation of an arbitrary 
linear functional of the state of the system. 
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Applying, now, requirement (b) leads to the following 
equations for the two arguments: 

Ai(x) + J dx'A2{x, xr)4>(x') = 0 

Ai+(:r) + J dx'A^x', x)<t>+(x ') = o 

(7) 

(8) 

Using Eqs. (7) and (8) to simplify the expression for F 
results in 

F[<f>+, <£] = A0 + J dxAi+(x)<f>(x) (9) 

when the arguments satisfy the two preceding equations. 
In this case we have the following more general result: 

The Wigner-Seitz Cell; A Discussion and a 
Simple Calculational Method 

A frequent problem in reactor design is the calculation 
of the thermal flux distribution in a fuel element and its 
associated moderator, i.e., the cell problem. For the sake 
of simplicity, a common design practice is to use a mono-
energetic treatment, and the discussion in this letter is 
limited to this one-velocity approach. Because of the strong 
absorption in the fuel, P- l (diffusion) theory is inadequate 
and a common practice is to employ a P-3 calculation. If 
the fuel element is cylindrical, the associated moderator 
(whose outside perimeter is frequently square or hexagonal) 
is often transformed, for the purposes of calculation, into an 
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"equivalent" annulus by demanding that the area of the 
mathematical annulus be equal to the actual cross-sectional 
area of the moderator. This procedure is referred to as the 
Wigner-Seitz approximation and results in a much simpler 
one-dimensional (in space) problem. In this letter we give a 
brief discussion of the existing calculational methods for 
the Wigner-Seitz cell and suggest a new and simple method 
which appears to be quite accurate. 

Until recently the boundary conditions associated with 
the Wigner-Seitz cell were taken to be reflection of all 
neutrons at the cell boundary; i.e., every neutron incident 
on the cell boundary is reflected according to Snell's Law. 
This boundary condition is motivated by the fact that at the 
actual (square or hexagonal) cell boundary, symmetry con-
siderations demand a reflection boundary condition. For the 
P-3 Wigner-Seitz approximation, the reflection boundary 
condition, in the notation of (1), implies 

^11 = ^31 = 3̂3 = 0. (1) 

That is, three of the six moments are equated to zero at the 
cell boundary. Thie (2) has shown, however, that for tight 
lattices (thickness of the moderator annulus less than one 
mean free path) the P-3 Wigner-Seitz cell calculation, using 
Eq. (1) as the boundary conditions, leads to an inordinately 
large disadvantage factor (ratio of average flux in the 
moderator to average flux in the fuel). Since the same be-
havior was observed in high order S-N calculations (with 
reflecting boundary conditions), Thie concluded that the 
error stemmed from the physical model used, i.e., the 
Wigner-Seitz approximation with reflecting boundary con-
ditions. That is, reflection from the curved Wigner-Seitz 
boundary is an artificiality which cannot be realized physi-
cally by the neutrons. Said another way, in order for sym-
metry considerations to imply reflection at a cell boundary, 
one must have an infinite symmetric array of cells filling all 
space. Obviously for cylindrical cells the geometry does not 
allow a completely filled space. 

In order to improve the results of a cell calculation while 
still retaining the one-dimensional simplicity of theWigner-
Seitz model, at least two sets of boundary conditions, differ-
ent from Eq. (1), have been proposed. Honeck (3) has sug-
gested (and used successfully) that the directional flux re-
turn from the cell boundary with a nearly isotropic distri-
bution. This is accomplished by adding an optically thick 
outer region of pure scatterer (of infinite mass in the energy 
dependent problem) to the Wigner-Seitz cell. Secondly, 
Clendenin (4) has shown that the P-3 calculation can be 
improved by retaining the simple Wigner-Seitz cell (no 
extra region) but modifying the boundary conditions. Since 
i/'n is the neutron current, he argues that all cell calcula-
tions must set ipu equal to zero at the cell boundary. As 
a second condition, the gradient of the scalar flux was set 
equal to zero at the cell boundary. As with the reflecting 
boundary conditions, the motivation for this lies in the fact 
that symmetry demands a zero gradient at the actual 
(square or hexagonal) cell boundary. As pointed out by 
Clendenin, reflecting boundary conditions on the cylindrical 
surface do not imply that the derivative of the scalar flux 
vanishes, except in the special case of the P- l approxima-
tion. Several alternatives were tried for the third required 
boundary condition; the results were quite insensitive to 
this choice. 

We now note that both of these suggestions, i.e., iso-

tropic flux return and a zero spatial gradient are contained 
in a very simple theory, namely, P- l (diffusion) theory. 
Thus one might expect diffusion theory to be quite adequate 
in the moderator. However, due to the strong absorption in 
the fuel, diffusion theory underestimates the flux dip in 
this region. Based on these arguments, one might expect 
that a theory employing diffusion theory in the moderator 
and a more accurate transport description in the fuel would 
yield quite good results. Such a theory is that of Amouyal 
et al. (5) and the results reported by Thie (2) indeed support 
the validity of this conclusion. 

We now suggest another calculational method which has 
the two desired characteristics at the cell boundary, and has 
certain advantages over the method of Amouyal et al. and 
the P-3 method of Clendenin. This calculation employs a 
modified diffusion theory as recently described in ref. 6. 
The main characteristics of this diffusion theory are: 

1. The scalar flux in a homogeneous region has the 
asymptotic transport theory behavior. 

2. The current at an interface between two media is con-
tinuous. 

3. The scalar flux has a finite discontinuity at an inter-
face between two media. This tends to compensate for the 
transient (rapidly varying) flux in the vicinity of an inter-
face. 
Although the formalism in (6) is constructed for slab 
geometry, we assume that the results are applicable to 
cylindrical geometry by merely writing the Laplacian in 
cylindrical coordinates. Assuming a spatially constant 
source in the moderator and no source in the fuel, the equa-
tions we must solve are 

fdWr) , 1 d<pi(r)~] »i —7T" + ~ j - 2 i ( l - ci)^i(r) + S = 0, dr2 r dr J 

] 
(2) 

^ pVo(r) 1 d<po(r) 
[_ dr2 r dr 

So(l - Co)<po(r) = 0, (3) 

where subscripts 0 and 1 refer to the fuel and moderator 
respectively, D is the diffusion coefficient, <p(r) is the scalar 
flux, 2 is the collision cross section, c is the mean number of 
secondaries per collision, and S is the magnitude of the 
source. The diffusion coefficient is taken to be the asymp-
totic transport diffusion coefficient, 

D = (1 - c)/v*2, 

where 

2v 

(4) 

(5) 

In Eq. (4) we have assumed isotropic scattering. To account 
for anisotropy in the scattering, one makes the transport 
correction, i.e., replaces the scattering cross section, 2a , 
by 2s (1 — £), where £ is the average cosine of the scattering 
angle. With the radius of the fuel rod as Ro and the radius 
of the Wigner-Seitz cell as R\ , the appropriate boundary 
conditions are 

d<po(0) ^i(Pi) 
dr dr = 0, 

r / r> \ r. ^l(Po) ^ d M J {Ho) = —L>1 = —Do 7 , dr dr 
<PI(Ro) - <PO(RO) = I J(Ro) | (AI), 

(6) 

(7) 

(8) 
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T A B L E I 

D I S A D V A N T A G E F A C T O R S B Y V A R I O U S M E T H O D S 

Lattice" 1 2 3 4 
s U f l i - Ro) = 0.504 0.336 0.278 0.185 

P - l 1.051 1.039 1.036 1.030 
bP-3 (Clendenin) 1.099 1.077 1.075 1.059 
This work (Eq. 9) 1.105 1.093 1.090 1.084 
Monte-Carlo 1.135 ± 0.031 — — 1.137 d= 0.012 
Amouyal 1.170 1.169 1.155 1.159 
P-3 (Reflecting) 1.165 1.188 1.207 1.265 

a All lattices are 1.5% enriched uranium with a fuel rod radius of R0 = 0.15 in. Thie (2) gives more detailed informa-
tion on the lattice characteristics. 

6 These results take i = 0 as the third boundary condition. The results with other choices for this third condition 
are substantially the same (see ref. 4)-

where Al is an integral whose magnitude depends on the 
mismatch in cross sections between the fuel and the moder-
ator. This integral has been computed numerically and is 
tabulated in (6). Our solution for the cell disadvantage 
factor, d, defined as the ratio of the average flux in the 
moderator to the average flux in the fuel, is 

F + G + (E - 1) t So(l - CO)Ro2 

(1 - CiXW - Rtf 

where E, F, and G are given by 

uSitfZi2 - Ro2) E = 

F = 

G = 

2Ro 

7o(n Si R,)KM Si RJ + Kojv, Si Ro)h(vi Si Ri)' 
IM^IRIJK^V^RO) - K i U S ^ O / i ^ i S ^ o ) 

I>0 So Ro Io(VQ2QRO) 
/ lUSo Ro)' 

So(l - Co) (Al) 

(9) 

(10) 

(11) 

(12) 

where Ii and Ki are the usual modified Bessel functions of 
the first and second kind. The functions E and F have the 
usual physical interpretations as noted by Glasstone and 
Edlund (7). The occurrence of the function G, which arises 
from the discontinuity of the scalar flux at r = Ro , is the 
major difference between this formulation and the P - l 
result given by (7). A second, but less important, difference 
is tha t v is defined in P - l theory as v = \ / 3 ( l — c) instead 
of by Eq. (5). However, in the limit as c approaches one, 
i.e., in the moderator, the P - l definition and Eq. (5) agree. 
Thus only in the fuel is this second difference felt. 

Equation (9) was used to compute the disadvantage 
factor for the first four lattices analyzed by Thie (2). Table I 
gives these results along with a summary of the results of 
Thie (2) and Clendenin (4). We see that the formulation 
suggested in this letter leads to a disadvantage factor signifi-
cantly greater than the P - l result. This is, of course, in the 
proper direction since P - l theory underestimates the flux 
dip in t h e fue l . We also no te t h a t our resul ts compare very 
favorably with the P-3 results of Clendenin (4). If one 
takes the 2-D Monte-Carlo results as a reference, our results 
are slightly better than Clendenin's P-3 results. I t is also 
interesting to note that our results are an underestimate of 

the disadvantage factor, while the method of Amouyal 
et al. is an overestimate (again taking the Monte-Carlo 
results as a reference). 

With regard to taking the Monte-Carlo results as a refer-
ence calculation several points should be made. For the 
purposes of these calculations, Thie (2) mentions tha t the 
fuel rod was approximated by a square with the corners re-
moved. For tight lattices, this approximation could lead 
to significant errors. Further, the disadvantage factor 
should decrease as the water to fuel ratio decreases. The 
Monte-Carlo results do not show this trend. I t is interesting 
to note that the method of Amouyal et al. as reported by 
Thie does not entirely show this trend either (see lattices 3 
and 4 in Table I), whereas results using Amouyal's method 
reported by Honeck (8) do show the proper trend. Finally, 
the statistical errors in (d — 1) associated with the Monte-
Carlo results are quite large; i.e., 23% for lattice 1 and 9% 
for lattice 4. All of these points make the validity of the 
Monte-Carlo results for reference purposes open to suspect. 
Perhaps a better reference would be the P-3 results of Clen-
denin (4) with which our proposed method gives quite good 
agreement. 

The advantage of the calculation proposed here over 
Clendenin's P-3 calculation is simplicity if one is doing a 
hand calculation and a savings in machine time if a com-
puter is involved. The advantages of our method over tha t 
of Amouyal et al. (5) are several: 

1. While the treatment of the moderator by the two 
methods is essentially the same, our method treats the fuel 
in a slightly simpler fashion. 

2. Our method gives a flux distribution in the fuel. 
3. Our method is applicable to an arbitrary number of 

regions. 
4. Our method is capable of treating multidimensional 

problems. 
This last point should be emphasized. One of the in-

centives for using diffusion theory for multidimensional 
problems is the relatively small amount of computer time 
involved. The modified diffusion theory suggested in this 
letter is no more complex than the usual (P-l) diffusion 
theory, but appears to give P-3 accuracy. This conclusion is 
supported by other calculations not reported here. Thus it 
may be feasible to do two-dimensional cell problems in 
routine design work. 
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