Letters to

Comments on “Exact Time-Dependent Second Spatial
Moment of the One-Speed Neutron

Transport Model”

In a recent Note, Barnett' presented a calculation of the
time-dependent second moment of the one-velocity neutron
distribution. I would like to point out that if one is inter-
ested in the moments, it is unnecessary to calculate the full
distribution; instead, one should start directly with equa-
tions for the moments. The use of moments is not new;
they have been applied quite often to the age equation in
which the age is the analog of the time variable. In general,
the age equation is more complicated because in that case
the coefficients of the differential equation are age (time)
dependent,

We begin with the one-dimensional transport equation
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where we have set the velocity and the scattering mean
free path to unity. In these units, the fotal cross section is
1 + a, where a is the ratio of adsorption to scattering (a is
assumed constant). If the scattering function P(y, ') is a
function only of the angle of scattering, 6, with

cos 8 = pu' + (1- Y21 -2 cosg , (2a)
then
Pwu) = [PO)dy (2b)
and if P(#) can be expanded in Legendre polynomials,
Pp) = %1 Z(2n + 1) ¢, P,(cosf) , ¢, =1
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one has immediately
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If one now defines the harmonic moments G(t),
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with a similar equation for S,;, the moments of the source,
Eq. (1) is transformed into
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which is an ordinary differential equation for the m’th
moments recursively in terms of the (m - 1)’th moments.
For the steady-state moments, one sets
S(x, , 8) =% 5(x)
and omits the time dependence in Egs. (1) and (3). The
source moments are then Syt = 6x00k0, and the moments can
be computed by straightforward recursion. One can char-

acterize the moments by the total order p = m +%, and each
moment may be computed from moments of lower order in

the sequence 00;11,20;22,31,40;33,42,51,60; . . . . With the
given source, all other moments vanish. Then
Goo = 1 (49.)
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For the time-dependent moments,
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and one finds
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50 that the total neutron field decays exponentially.
The first-order moments G, (#) and G,,(f) both vanish.
The nonvanishing second-order moments are given by

+ aGy(t) = 8(t) or Gylt) = exp(-at) , (5)

ng‘;(t) + (1 +a-c)Gelt) =0 (6a)
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dG;;(t) + aGyp = 2Gy(t) (6c)
Integration of these equations leads to
Goz(t) = 0 (7a)
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Equation (7c) then leads directly to Barnett’s result. This
procedure is significantly shorter than Barnett’s derivation
for the second moment, but the real advantage comes when
one attempts to compute higher moments,
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For the fourth-order moments, we write
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The integrations are straightforward, although increasingly tedious:
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where £ =(1 - ) £,

The three-dimensional moments may be found most
easily from the plane-point transformation.” The distribu-
tion from a point source &(7) in terms of the distribution
from a plane source ¢(x) is
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and the radial moments,

M (t) = f¢(r)rz” <Anvidr
are simply

Mzn(t) = (214 1) Gay o)

Then, for short times, << 1, we have M,(¢) — ¢*, and for
t >> 1, the distribution of the unabsorbed neutrons is
20
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The mean fourth moment to absorption can be calculated
from Eq. (9¢) and is given by

r , (10)
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which agrees with Eq, (4c).

The higher moments can be similarly calculated, but
there is probably no need for exhibiting the results ex-
plicitly; the recursive formulas are easily converted to
numerical calculation.
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Reply to “Comments on ‘Exact Time-Dependent Second
Spatial Moment of the One-Speed Neutron

l’ "

Transport Mode

Cohen’s approach to calculating the time-dependent
moments by starting with the transport equation is elegant
and efficient, I suppose that the simplicity of the second
moment formula should lead one to suspect that it must be
the solution to some simple differential equation., This, in
turn, should suggest that closed systems of moments equa-
tions might be obtained—a rare and rewarding occurrence.

Cohen mentions that ‘‘it is unnecessary to calculate the
full distribution’’ to find spatial moments. I assume he
means, speaking probabilistically, that it is unnecessary to
find the probability density function that describes the
neutron’s distance from the origin at time {; or, in trans-
port theory terms, that it is unnecessary to find an expres-
sion for the neutron number density as a function of radius
and time, He is surely correct, and I certainly did not find,
or attempt to find, the probability density function in ques-
tion. To do so would mean that the entire point-source,
time-dependent problem would be solved. In effect, Case
and Zweifel’ have solved the complete problem for the
infinite one-dimensional case. They find the Green’s func-
tion for the monodirectional plane source of neutrons at
time zero problem. Their solution is somewhat formal and
involves integrals of complex valued function.

For those who are facile with the transport equation,
several comments and questions might be of interest:

1. Is it possible to extiract the time-dependent spatial
moments from the Case and Zweifel solution?

2. Can the transport equation approach shed any light on
the odd time-dependent spatial moments? The odd
moments are zero in the one-dimensional case but
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