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those designed for D20, and it is suggested that more em-
phasis be placed on the latter phenomenon. The hydro-
dynamic instability is a strong function of not only LB/LT , 
but also of the configuration of the test section, and of the 
entire flow loop, pressure drop, and presumably of power 
distribution. The use of flow-stabilizing orifices presumably 
increases the critical LB/LT , while the existence of com-
pressible volume in the loop may decrease it; in fact, hydro-
dynamic instabilities can be induced even in the subcooled 
region if surge volume is present. 
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Minimum Mass Thin Fins with Internal 
Heat Generation 

In a recent paper (1) Minkler and Rouleau have con-
sidered the effect of a constant heat generation rate 
(Q Btu/hr-ft3) on the heat transfer in thin longitudinal fins. 
In particular, they have asserted that the temperature 
gradient is constant in a fin designed to have minimum 
mass (= minimum profile area Ap) in the class of fins which 
transfer a specified amount of heat (qo Btu/hr-ft) from a 
base at a specified temperature (T0) by convection to sur-
roundings at another specified temperature (selected as the 
zero of the temperature scale) if the thermal conductivity k 
and the heat transfer coefficient h are constant. I have 
shown elsewhere (2) that this assertion is mathematically 
incorrect when Q > 0 (the error is significant only for large 
Q), and have set up and solved the problem of Bolza in 
the calculus of variations to find the fin profile and the 
temperature distribution for the fin with minimum profile 
area. 

Since the optimum fin profile has a sharp tip (this is true 
also for the optimum fin with a constant temperature 
gradient) it is natural to inquire what penalty in profile area 
must be paid in order to use a fin with a triangular profile, as 
in Fig. 1. This question is answered here, and the results are 
presented in Fig. 2, which shows a graph of the dimensionless 
quantity a = h2kT03Ap/q03 versus A = Qq02/kh2T03 for the 
optimum triangular fin as well as for the optimum fin and 
several points for the optimum fin with a constant tempera-
ture gradient. The data for the curved fins are taken from 
ref. 2. We also show in Fig. 2 graphs of the dimensionless 
over-all height of the fin p = whTo/qo . 

With reference to Fig. 1, let q(x) and T(x) be respectively 
the heat flow rate per unit length of fin (Btu/hr-ft) and 
temperature excess over the surroundings at the point x in 
the fin where the fin thickness (ft) is 2dx/w. Then 

, . 8xdT dq 2Q8x 
q(x) = 2k- — = 2hT —— ,0 < x < w, (1) 

w dx dx w 

are the differential equations governing the heat transfer in 
the fin. Since no heat flows through the tip of the fin, we have 

FIG. 1. Sketch of profile of triangular fin 

the boundary conditions 

x = 0, q = 0; x = w, q = q0 , T = T0 . (2) 

The fin profile area is 
Ap = 5 w, (3) 

and the mathematical problem is that of finding two con-
stants 8 and w and two functions q(x) and T(x), defined 
when 0 ^ x ^ w, and satisfying the differential equations 
(1) and the boundary conditions (2), for which the profile 
area (3) is a minimum. 

If we eliminate q from the differential equations (1) and 
the boundary conditions (2), we see that 

A 
dx 

hwT Qx „ 
- — , 0 < £ < w, (4) 

k8 k 

z = = 0 •>x = w , T = T ^ = £ - . (5) 
dx dx 2 k8 

A particular solution of the inhomogeneous linear differen-
tial equation is Qk82/h2w2 + Qbx/hw, and the general solu-
tion can be found by adding to this particular solution the 
general solution of the homogeneous linear differential 
equation. If a new variable u = 2(hwx/k8)112 is introduced, 
the homogeneous equation takes the form 

d2T dT 
u~— + — - uT= 0 

du2 du 

of Bessel's equation of zero order and imaginary argument. 
Therefore the general solution of the differential equation 
(4) is 

T = ITT + ? + TJLBUU) + CKq(U)\, (6) n2w2 hw 
in which B and C are arbitrary constants, and I0 and K0 are 
the standard Bessel functions of zero order. In terms of the 
dimensionless quantities a, A, and n introduced earlier and 
X = 2(hw2/k8)112, we see that 

kh2T£A = M̂O 4g0V 
qQ2 ,W hT0' ~ hkTW 
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FIG. 2. Graphs of dimensionless minimum profile area 

a = WJcToKAp/qo3, and dimensionless fin height /z = whl\/qQ 

for (i) optimum fin, (ii) optimum fin with constant tempera-
ture gradient, and (iii) optimum triangular fin. 

and consequently we find that the function T defined in (6) 
will satisfy the boundary conditions (5) if and only if C — 0, 

B h i X ) = (X/4/x) - ( V A / X 3 ) , 

16m3A[2A/0(A) - (X2 + 4 ) / i ( X ) ] + 4/zX4/i(X) = X 5 / 0 ( X ) . ( 7 ) 

Thus, the minimizing problem has been reduced to find-
ing, for given A, a pair of values X and /z satisfying (7) for 
which 

a = 4 M 3 / X 2 ( 8 ) 

is a minimum. It follows from (8) and da/d\ = 0 that 
dn/d\ = 2ju/3X. If this value is substituted into the equation 
obtained by differentiating (7) with respect to X, the result 
can be manipulated to read as follows: 

16 M 3 A[(2X - X 3 ) / o ( X ) - (X2 + 4 ) 7 ! ( X ) ] 
( 9 ) 

+ ( 4 M X V 3 ) [ 1 1 / 1 ( X ) + 3 / 0 ( X ) ] = X 5 [5 /o (X) + X / ^ X ) ] . 

Equations (7) and (9) are a pair of simultaneous linear 
equations in the variables ^ and ju3A and their solution is 

= 3X[(4X + X3) / 1
2 ( \ ) + 2 ( 8 + A2)/q(X)/I(X) - (8X + X3)/0

2(X)] 

M " 8 [ 4 ( 4 + X2)/,2(X) - 2X/o(X)/i(X) - 3X2/02(X)] 

(10) 

= X5[3X/I2(X) + 47Q(X)/I(X) - 3X/O2(X)] 

A 32 m 3 [4 (4 + X2)/i2(X) - 2X/c(X)/i(X) - 3X2/02(X)] ' ( 

Equations (8), (10), and (11) can now be used to calculate 
the values of a and n plotted versus A on Fig. 2 for the tri-
angular case. The maximum possible value of A is 0 . 6 6 4 0 , 

attained when X = 4.975 and in this extreme case the dimen-
sionless profile area a is 1.4746. It is seen that for small and 
moderate values of A the triangular fin is slightly inferior to 
the optimum fin, as well as to the optimum fin with constant 
temperature gradient, the inferiority decreasing with in-
creasing A. For larger values of A the optimum triangular 
fin becomes superior to the optimum fin with constant 
temperature gradient and has an area almost indistinguish-
able from that of the optimum fin. 
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Xenon Spatial Oscillations* 

In an earlier article (1), the threshold values of the flux 
for oscillations in the axial power distribution were esti-
mated as a function of reactor size and degree of flux flatten-
ing, for a cylindrical reactor with a zero power coefficient. 
The purpose of this letter is to make available the results of 
more recent calculations that show the effect of nonzero 
power coefficients, and the threshold values for "flux t i l t " 
oscillations in a cylindrical reactor with a flattened radial 
power distribution. 

The mathematical development and the constants em-
ployed in the calculations are given in ref. 1. In that paper 
it was shown that the flux threshold for oscillations and the 
corresponding oscillation periods could be obtained, with 
an error of less than 5%, from the amount of material buck-
ling that must be added uniformly to the critical reactor to 
excite the first spatial harmonic orthogonal to the unper-
turbed power distribution. The relations among the thresh-
old flux level for axial oscillations, the oscillation period, 
the additional buckling required to excite the first har-
monic, MI2, and the power coefficient are given in Eqs. (10) 
and (11) of ref. 1. 

Figure 1 shows the effect of a nonzero temperature 
coefficient (2) on the flux threshold for xenon oscillations for 
an unflattened (cosine) power distribution in a slab re-
actor (or in the axial direction of a cylindrical reactor). The 
units of the temperature coefficient are milli-k of reactivity 
per unit power where unit power corresponds to a flux level 
of 6 X 1013 n/cm2 sec. For other flux levels, if an effective 
temperature is defined as being directly proportional to the 
flux level, the temperature coefficient per unit effective 
temperature is assumed constant. 

* The information contained in this article was devel-
oped during the course of work under contract AT(07-2)-l 
with the U. S. Atomic Energy Commission. 




