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keal-mole™! cited above, Davis has estimated from his
equilibrium data (1) a strength of 4 keal-mole™ for the bond
between TBP and H,O (19). Whether the existence of such
a weak complex can safely be ignored may depend upon (a)
the relative strengths of TBP bonds to other ligands in a
given system and (b) the crudity of the data to be ex-
plained.
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Reply to Preceding Letter “On the Existence of
Tributyl Phosphate Monohydrate”

The conclusions based upon the data of ref. 1 (ref. 3 of
Letter) were:

(1) Water transfers into TBP-hexane solvents without
the restriction of a slow chemical conversion step (such as
TBP + H.O — TBP-H,0).

(2) Concerning the possible diffusing species, the kinetic
data were best correlated by treating TBP-hexane in the
same manner as several other organie solvents investigated.
It was not necessary to single out TBP from the other sol-
vents by assigning to the diffusing species the specifically
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hydrated formula TBP-H.O. If the diffusivity of water in
TBP is estimated by the same methods applied to the
reference solvents isobutanol, ethyl acetate, furfural and
chloroform (i.e., by assuming the diffusing species to be
(H-O), in the Wilke-Pin Chang relation), the resulting cor-
relation is consistent for all solvents to within experimental
error. If the diffusivity of water in TBP is estimated by
postulating the diffusing species TBP-H,0, the TBP sol-
vent results are separated from those of the reference
solvents by amounts greater than the estimated accuracy
of the method.

Assuming the diffusing species in all cases (TBP-hexane
and the reference solvents) to be a hydrated solvent mole-
cule does not yield a satisfactory correlation. The choice of
(H;0), as the transferring species in water-as-solute diffu-
sion permits the Wilke-Pin Chang correlation to be used for
estimating the appropriate diffusivities. From the data
given in ref. 2 (ref. 17 of Letter), this assumption repro-
duces the measured diffusion coefficients to within 2-69
for ethyl acetate, 3-69 for isobutanol, and 7%, for furfural
(excluding the furfural datum at 30°C, for which the error
is 31%). If one attempted to reproduce these same data by
assuming the- diffusing species to be a hydrated solvent
molecule, the diffusivities are underestimated by 23-279%,
for ethyl acetate, 21289, for isobutanol, and 209, for fur-
fural (again excluding furfural at 30°C, for which the error
is 46%). The hypothesis of diffusing hydrated solvent
molecules (in the reference solvents) was rejected because
this model does not reproduce the measured diffusivities
as well as the estimates based upon (H»O);. Even if these
incorrect diffusivities were utilized in computing the
Schmidt numbers for the reference solvents, the diserepancy
between the TBP-hexane and reference solvent results
would still be on the order of 25%,.

Utilizing the experimental diffusivities for the reference
solvents instead of those based upon the empirical estimate
would have had little effect. The ordinates of the reference
solvent points on Figures 2 and 3 of ref. I would have been
shifted by faetors of approximately the square root error
in the diffusivity diserepancies mentioned above, or «~1-39%.
The reference solvent points of Figures 2 and 3 cannot be
budged by any postulate concerning the structure of the
diffusing water; all of the parameters which locate the
position of these points have been experimentally de-
termined.

An unambiguous decision as to which diffusion coefficient
is appropriate for TBP-hexane solvents must be deferred
until the diffusivity of water in these systems is actually
measured. Lacking such information, the most satisfactory
way of analyzing the water extraction data is totreat TBP-
hexane in the same manner as the reference organic solvents.

While there undoubtedly is hydrogen bond interaction
between dissolved water and all of the solvents examined,
the kinetic data indicate that it is not strong enough to
warrant postulating that each diffusing water molecule
carries along its own associated solvent molecule.

The effect of whatever complexing occurs on the extrae-
tion kinetics is approximately the same for the TBP-
hexane and the reference solvents.
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Effect of Temperature Variation on “Inter-
mediate-Resonance” Formulas

The “‘intermediate-resonance’”’ formulas derived by
Goldstein and Cohen (1) for effective resonance integrals in
homogeneous systems have found wide acceptance as a
means of interpolating between the extreme “narrow-
resonance’’ and ‘‘infinite-mass’’ approximations at absolute
zero temperature. However, there appears to be no reference
in the literature to the validity of applying these formulas
to the determination of effective resonance integrals at
working temperatures. The effect of temperature variation
is considered in this note.

Theoretical Background

Negleeting interference scattering and the variation in
the reciprocal of the energy over a resonance, we may write
the first and second order approximations to the effective
resonance integral at working temperatures in the form
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where the notation is the same as that used by Dresner (2),
except that

a = F(a'm + )\opa)/‘70<r“r -+ )\Pn),

a1 = op/00 = Dresner’s 8,

oo T'opa/Tuog

and
Tz = 2E,(1 — «)/T.

Tiquations (1) and (2) give, to first and second order re-
spectively, the “infinite-mass’® approximation if A is put
equal to zero and the ‘‘narrow-resonance’” approximation
if A is taken as unity. These extreme approximations may be
combined linearly, following Goldstein and Cohen (1), to
give
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where the “best’” value of I results from the choice of u in
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such a way that IV = 1,52). Hence
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and J (8, @) is the well-known funetion tabulated by Dres-
ner (2) and others.

Equation (5) may be used to give an interpolation pa-
rameter, u, appropriate for use in (3) or (4) at any given
temperature.

Numerical Procedure

(i) Generation of ¢ (8, x)
The line shape function was obtained by solving the

differential equation
V8, ) = 16* — 0%y’ (6, x) — 1022 + 6% + 0% ¢ (6, 2), (6)

where the primes denote differentiation with respect to
the variable z. The infinite range required for the integrals
was truncated to the range z = —d to x = d, and the
range subdivided into 2j equal steps in z of width 4. It
was necessary to choose d so that x,/h was exactly an even
integer n.

Using the notation

z, = —d+ (& — 1)k
and
¥ = 1/1(0, il?i),

the line shape function was obtained from the following
algorithm.
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