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Letters to the Editors 
On the Linear Extrapolation Distance 

The standard practice used in computing the thermal 
worth of a control element within an assembly by diffusion 
(P-l) theory is to replace the element by an internal bound-
ary condition and carry the diffusion calculation up to the 
point at which this boundary condition is applied. Gener-
ally one of two conditions is used. The first of these states 
t h a t the scalar flux vanishes at a distance z0 past the as-
sembly-control interface. Zo is referred to as the extrapo-
lated endpoint. The second condition states tha t at the 
assembly-control interface the flux and its gradient salisfy 
— (l/<p)n-V<p = 1/d, where n is a unit normal vector pointing 
into the control region, d is referred to as the linear ex-
trapolation distance. This lat ter condition is the more 
natural of the two since it is applied at the actual assembly-
control interface, and for this reason is the one most gener-
ally used. In this letter we restrict ourselves to a discussion 
of the linear extrapolation distance and suggest two simple 
methods of improving upon the value of d presently being 
used in thermal control worth calculations. 

If the control element is black, i.e., all neutrons im-
pinging upon it are absorbed, the P- l value of the linear 
extrapolation distance, d, using a Marshak (no return cur-
rent) boundary condition is 0.6667 Xtr, where Xtr is the 
transport mean free path. However, an exact transport 
solution for a semi-infinite halfspace bounded by a vacuum 
with a source at infinity, i.e., the Milne problem, gives d 
equal to 0.7104 Xtr for a pure isotropic scatterer.1 Accord-
ingly, the P- l result of 0.6667 Xtr is often replaced by the 
transport result of 0.7104 Xtr as the value of d used in con-
junction with diffusion theory. Further, two corrections 
are frequently applied to the transport value of 0.7104 Xtr. 
The first of these accounts for the variation of the Milne 
value of d with c, the mean number of secondaries per 
collision. In the limit c = 0, i.e., a pure absorber, the linear 
extrapolation distance in the Milne problem is 1.0000 Xtr. 
The value of d for intermediate values of c can be obtained 
from the tabulation of Case, deHoffmann, and Placzek (1). 
Secondly, the linear extrapolation distance varies with the 
curvature of the control element. In the limit of a black 
cylinder with an infinite curvature (zero radius), t ransport 
theory gives 1.3333 Xtr as the value of d. For cylinders of 
finite curvature d can be estimated from the plot of d versus 
radius given by Weinberg and Wigner (2). 

All of the above remarks are based on a Milne-type so-
lution, i.e., a medium with the source of neutrons at in-
finity. If one is using few-group diffusion theory to compute 
the thermal worth of a control element, the slowing down 
source to the thermal group is not at infinity, but can better 
be represented as spatially constant in the vicinity of the 
control element. The semi-infinite halfspace with a spatially 

1 For isotropic scattering, Xtr = 1/2. 

constant source can be treated exactly by transport theory 
and should yield a more realistic linear extrapolation dis-
tance for the control worth calculation than does the Milne 
analysis. 

According to Davison (3), the asymptotic solution for 
the scalar flux within a semi-infinite halfspace occupying 
2 > 0 and containing a spatially constant source of magni-
tude S is 

( ) S !i 1 [2(1 ~ c)(l ~ v*)~\m 

^ 2(1 - c) j c [ c - ( l - it) \ 
(1) 

where 2 is the macroscopic collision cross section, c is the 
mean number of secondaries per collision, z0 is the extrapo-
lated endpoint in the Milne problem and is tabulated by 
Case et al. (1), and v is the asymptotic eigenvalue of the 
Boltzmann equation, given by 

From Eq. (1) the linear extrapolation distance for the con-
stant source problem is easily found to be 

d I f f c - (1 - V 2 ) > S ) 

\tt v\ [_2(1 — c)(l — v2)J e (3) 

Table I compares numerical values computed from Eq. 
(3) with the corresponding Milne (source at infinity) values 
as tabulated by Case et al. (1). We note tha t for a pure 
absorber, i.e., c = 0, Eq. (3) gives an infinite extrapolation 
distance, which, when used with diffusion theory, would 
yield zero control worth. This is obviously an incorrect 
limit and is a manifestation of the inadequacy of any 
asymptotic theory, such as diffusion theory, for strongly 
absorbing systems. 

Since (1 — c) <$C 1 is the region of practical interest, an 
expansion of Eq. (3) in powers of (1 — c) is useful. Correct 
to order (1 — c) we find 

d/X tr = 

0.7104[1 + 0.5340(1 - c)1/2 + 1.1523(1 - c) + 0(1 - c)3/2J, 

(4) 
whereas the Milne result gives 

d/\tr = 0.7104[1 + 0.4953(1 - c) + 0(1 - c)2]. (5) 

Because of the incorrect limiting behavior for a purely 
absorbing system, one is led to consider an alternate method 
of improving upon the Milne value of d. Again we consider 
the semi-infinite constant source problem and equate the 
exit current from the halfspace according to exact transport 
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TABLE I 
Linear Extrapo la t ion Distance, d, as a Function of 

the Mean Number of Secondaries per Col l i s ion, C, 
f o r t h e Semi-Infinite Halfspace 

c d/\tr-Milne source d/A t r-Constant source 

0 1.000 OO 

0.5 0.920 3.602 
0.6 0.875 2.272 
0.7 0.830 1.610 
0.8 0.787 1.219 
0.9 0.747 0.959 
1.0 0.710 0.710 

c d/Xtl - D = 1/32 d/\t.r; 
D = (1 — c)/v2X 

0.0 0.756 3.000 
0.1 0.755 2.676 
0.2 0.753 2.361 
0.3 0.751 2.012 
0.4 0.749 1.747 
0.5 0.746 1.517 
0.6 0.743 1.312 
0.7 0.739 1.141 
0.8 0.735 1.001 
0.9 0.729 0.874 
1.0 0.710 0.710 

analysis to the diffusion theory result in terms of an un-
known linear extrapolation distance, d. This equality can 
then be solved for d. Using this value of d to compute the 
thermal absorption of a control slab by diffusion theory 
will then give an exact transport result if the assembly is 
large and the slowing down source to the thermal group is 
spatially constant in the vicinity of the control element. If 
these two conditions are only approximately satisfied, as 
is the actual situation, one would still expect the result to 
be more accurate than tha t obtained using the Milne value 
for d. 

The diffusion theory result for the leakage, L, from a 
semi-infinite halfspace with a spatially constant source of 
magnitude S and isotropic scattering is 

L = 
£/2 

V ( X - c)/DX [1 + VU - c)/DX (2d)] 
(6) 

whereas the transport result for this problem is easily 
found from the analysis of Davison (3) to be 

L = 
2c 

1(0 (7) 

where D is the diffusion coefficient and 1(c) is tabulated by 
Case et al. (1). Equating Eqs. (6) and (7) and solving for d 
gives1 

Xtr [(l/v) - mm - c)/Di\ V ( 1 - C)/DX ' 
(8) 

TABLE II 
Linear Extrapo la t ion Distance, d, Required t o Give 

Exact Transport Leakage from a Semi-Infinite 
Halfspace w i t h a Spat ia l ly Constant Source 

To use Eq. (8) to compute d, one must know D as a function 
of c. The two most widely used diffusion theories are classi-
cal (P-l) diffusion theory with D = 1/32 and asymptotic 
(transport) diffusion theory with D = (1 — c)/i>22. Table 
I I gives numerical values of d as a function of c according 
to Eq. (8) for these two choices of D. 

For (1 — c) <3C 1 and D = 1/32, Eq. (8) can be expanded as 

d/\tr = 

0.710411 + 0.0926(1 - c)1/2 - 1.5573(1 - c) + 0(1 - c)3/2]. 

(9) 

A similar expansion for D = (1 — c)/*>22 yields 

d/\tr = 

0.7104[1 + 0.4178(1 - c)1/2 - 0.7573(1 - c) + 0(1 - c)3/2]. 

(10) 
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On the Existence of Tributyl Phosphate 
Monohydrate 

Tributyl phosphate (TBP) has found wide utility in the 
processing of heavy metal ores and spent fuel elements by 
solvent extraction. Wallace Davis has reported a study of 
the nitric acid-TBP system in which equilibrium distribu-
tion data are used to obtain a quanti tat ive description of 
the extraction process (1). In common with earlier work 
(cited in ref. 1), Davis' description assumes the existence 
of the complex TBP-H 2 0. A second article by Davis (2a) 
expresses some doubt as to whether the complex is actually 
formed; a third article (2b) implies tha t free TBP and 
TBP-H 2 0 are simply not distinguishable thermodynam-
ically (Equation 7). 

Olander and Benedict have recently reported the use of 
mass transfer data on the TBP—H20 system to indicate the 
nonexistence of TBP-H 2 0 (3). The lat ter authors compare 
the mass transfer rates of water entering the organic phase 
with "ordinary" systems in which they claim no complexing 
between water and solvent takes place. The ' 'ordinary" 




