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Reactor Dynamics with Reactivity Loss Rate 
Proportional to Energy 

Soodak (1) has considered the dynamic behavior of a 
nuclear reactor when an accident occurs which produces 
instantaneously an excess reactivity p0 and there is a (natu-
ral or man made) control mechanism serving to remove 
reactivity at a rate proportional to the energy generated 
after the accident. Under the assumption that the delayed 
neutrons have a negligible effect, he derived a third-order, 
nonlinear, differential system from which the performance 
of the reactor could be deduced. If the control mechanism 
is not ultimately disabled the reactivity will decrease 
steadily from its maximum value po , becoming zero at some 
time r after the accident, and the reactor will be quickly 
shut down after r as the reactivity continues to decrease, 
becoming an approximately linear function of time. In our 
model the limiting value of the reactivity is — oo, but this 
simply reflects the fact that the model has lost its utility 
for very large values of the time. In this paper we shall 
analyze the differential equation in order the determine the 
time r at which the reactor becomes critical again, the 
energy Q(T) generated up to time r, the power P(r) at time 
r, which is the maximum power attained after the accident, 
and the total energy Q(°°) generated. (Since almost all of 
the energy is generated in a time comparable to 2r or 3r, 
the failure of our model for very large values of the time 
should not significantly affect the value of the total energy 
Q(x) . ) The results are shown in graphical form in Fig. 1. 

The accident situation contemplated here has been con-

A=a^2po/>o-3 

Fig. 1. Graphs of dimensionless time po/_1r at which re-
actor becomes critical again, dimensionless energy alpo2Q(r) 
generated up to that time, ratio P(r)/Po of maximum power 
to initial power, and total dimensionless energy alpo2Q(*>) 
generated in accident, all expressed as functions of the 
dimensionless variable A = aPP^. 

sidered (2, S) in connection with large insertions of re-
activity in a fast reactor. The energy generated as the 
power rises causes a reactivity drop due to relative motion 
of the reactor parts. 

The mathematical statement of the reactor dynamics 
problem is identical to the mathematical description of the 
fluid dynamics problem of determining the laminar flow of 
a fluid over a flat plate when blowing or suction occurs (4). 
The existing tables of solutions to the second problem thus 
enable the preparation of the graphs of Fig. 1. In addition 
to this purely numerical work, we shall also derive series 
expansions for the four quantities graphed in Fig. 1 which 
can be used for sufficiently large (i.e., values of the 
dimensionless parameter A = a/2Popo3. Here I is the prompt 
neutron lifetime, Po is the reactor power level at the time 
of the accident, and a is the energy coefficient of reactivity. 

Let p(t) be the reactivity at time t after an accident oc-
curs which produces an instantaneous reactivity p0 . If Q(t) 
is the energy released up to time t after the accident, then 
our hypothesis about the control mechanism is that dp/dt = 
— aQ, for some positive constant a. The energy Q(t) is 
related to the power P(t) so that dQ/dt = P, and the as-
sumption that the delayed neutrons are negligible implies 
that dP/dt = pP/l. With these differential equations are 
associated the initial conditions that p(0) = po > 0, Q(0) = 
0, P(0) = Po . If the energy Q and the power P are elimi-
nated, we see that the reactivity p satisfies the third-order, 
nonlinear, differential system 

d*P/dt3 = l~lpd2p/dt2, 

P(0) = PO, P '(0) = 0, P" (0) = -APO. 

Let us now introduce new variables defined so that 

F = -ap/po , r} = pot/al, A = a/2po3Po (1) 

in which a is a positive constant to be determined. Then 

d3F/drjs + Fd2F/dr)2 = 0, 
F(0) = - a , F'(0) = 0, F"(0) = } 

We now choose a as a function of A so that F'{oo) = 2, 
this choice being motivated by the fact that the differential 
system, Fm + FF" = 0, F(0) = - a , F'(0) = 0, F'(oo) = 2, 
has been used by Emmons and Leigh (4) to describe the 
laminar flow of a fluid across a flat plate when blowing or 
suction occurs at the plate. The tables of F, F', and F" in 
( 4 ) may be used as follows to obtain the numerical results 
for the reactor dynamics problem shown in Fig. 1. For each 
positive value of a used as an initial value of — F(0) by 
Emmons and Leigh, there is a corresponding value of 
F"{0). Then it is readily seen that 

alPo2Q(oo) = 2a~2, A = F"(0)a-3. 

Moreover, by interpolation, in the tables we can find for 
each a the value r}0 such that F{rj0) = 0, and the values 
F'(770) and F"(r]0). Then the state of the reactor when it has 
become critical again can be found as follows: 

pd~lr — ar)o , 

alpfQir) = oT*F'(r, 0), 

P W / P o = F"(no)/F"(0). 

We can also use the tables to trace the history of the reactor 
by plotting -p/po , alpo2Q(t) = c r f F ' M , and P(t)/Po = 
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on a Datatron 205 to obtain numerical values of Fn , Fri', 
and Fn" (0 ^ n ^ 5). The numerical integration was con-
tinued until the values of Fn' were sensibly constant. In 
this manner we find that 

alpfQ(^) = a - ^ ' ( x ) = 
N=0 

a/po2Q(°°) = 1.65519A2/3 + 1.32140A1'3 + 0.60900 
+ 0.14684A-1 3 + 0.002469A~2/3 - 0.007240A"1 + • • •. 

Values of alpo2Q(<x) calculated from this power series agree 
satisfactorily (within \%) with the numerical values ob-
tained from the Emmons and Leigh tables for A as small 
as 0.22. 

In order to determine the properties of the reactor at 
the time r when it has become critical again, we return once 
more to the system (2), this time supposing that a - 1. 
The function F has a power series expansion 

Arj2 A173 A%I4 (A - A V 
F = -1 + — + — + — + - — 
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Fig. 2. Graphs of ratio—p/po of negative reactivity to 
initially inserted reactivity, dimensionless energy alpo2Q 
generated, and ratio P/Po of power to initial power, as 
functions of the dimensionless time variable pol~lt, for an 
accident for which A = 5.2637. 

F"(ri)/F"(0) as a function of ay] = pd~lt. This is done in 
Fig. 2 when A = 5.2637, a - 0.50. 

Let us now return to the system (2) and choose a to be 
A~m . A power series of the form 

F = £ F„ (,)<*• 
>i=0 

will be a solution of the system (2) provided that 

F0'" + J W = 0, Fo(0) = Fo'(0) = 0, F*"(0) = 1, 

F>» + F o F l» + F q » F i = o, F,( 0) = - 1 , 

Fi'(0) = F,"{ 0) = 0, 
n 

Fn'" + Z Fr'Fn-r = 0, Fn{0) = FM'(0) - Fn"(0) = 0 r=0 

(n ^ 2 ) . 

The Runge-Kutta procedure for solving differential equa-
tions was applied by Mrs. Marilyn Lindenlaub (nee Wagner) 

whose coefficients may be obtained by successively differ-
entiating the differential equation Fm + FF" = 0 and 
making use of the initial conditions F(0) = — 1, F'(Q) = 0, 
F"(0) = A. To solve the equation F(rjo) = 0, we try a solu-
tion 770 which is a power series in (2/A)1/2. If such a power 
series with undetermined coefficients is substituted into 
Eq. (3), and similar terms are collected, the first four co-
efficients can be determined, with the result that 

/ 2 v » r 3 / 2 Y 
'hi L ' - s U ) 

47 

2100 1 
11881 

4158000 

This value of rj{} may now be substituted into the series 
obtained by differentiating Eq. (3) once and twice, with 
the result that 

r 4 / 2\ i / 2 

Ff(V0) = alpo-QM = (2A)1/2 1 + ^ ( 7 ) 

i i ( 4 1 6 ( A * 1 2 
+ 9 0 0 \ A / ~ 259875 \ A / 

F'f{^) _P{r) _ r 2/_2V/. 1 3 / A 67 / 2 \ 3 

A Po L 3 \ A / 90 \ A / 9450 \ A / 

+ 

Values of 7}0 , F'(r)0), and F"(-q0) calculated from these series 
agree quite well (within \%) with those obtained from the 
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Emmons and Leigh tables for A as small as 0.53, 0.23, and 
0.39. respectively. 

The reactor dynamics problem can be slightly generalized 
to include the effect of a linear reactivity insertion or re-
moval, so that dp/dt = b — aQ. Instead of the substitution 
(1) we now suppose that 

F = —ap/po , Y] = rji + (pd/od), 

A = aVptP, , B = 6/po2 

in which a and rji are constants. Then 

d*F/dr + Fd2F/drj2 = 0, 

FM = -a, F'(m) = -Ba
2

, F"(m) = 

and the quantities a and 771 are selected so that Ff(0) = 0, 
F'(*>) = 2. Numerical results may be obtained from the 
tables in (4) as follows. For each negative value of F{0) 
and each 771 used by Emmons and Leigh, values of F(rn)f 

Ff{rji), and F"(r) 1) can be read from the tables. Then a = 
-F(m), B = -F'M/IFM}2, A = F'M/IFM}*, and 
the total energy release (K00) is such that 

alpfQ(oo) = B + 2a"2. 

Of course 771 must be restricted to insure that Ffa) < 0, 
in order that a > 0. If the value 770 where F(rio) = 0 is found 
by interpolation in the tables, as well as the values F'(i7c) 
and F"(?7o), then the state of the reactor at the time r when 
it has become critical again can be found as follows: 

pol'W = a(770 - 771), alpo2Q(r) = B + aT2F'(r)0), 

P ( r ) /P 0 = F"M/F"(m). 

Unfortunately, all the values F'(rji) in the tables are 
positive, so that only negative values of B can be handled 
in this manner. Hence, linear reactivity removal problems 
can be solved, but linear reactivity insertion problems 
cannot until the tables in ( 4 ) are extended to negative 
values of 77. 

REFERENCES 

1. H. Soodak (ed.), "Reactor Handbook, Vol. I l l A, 
Physics." Wiley, New York, 1962. 

2. R. Daane , R. Mela, and J . De Fel ice , Progress report 
on the study of low probability, high hazard, fast re-
actor accidents. NDA 14-107 (November 1956). 

3. C. Klaiir , Energy release in high hazard accidents. 
NDA 14-149 (October 1956). 

4. H. W. Emmons and D. C. Leigh, "Tabulation of the 
Blasius Function with Blowing and Suction." Aero-
nautical Research Council, CP. No. 157, London 
(1954). 

J. E r n e s t W i l k i n s , Jr. 
John Jay Hopkins Laboratory for Pure and 

Applied Science, 
General Atomic Division of General Dynamics 

Corporation, 
San Diego, California 

Received July 30, 1962 
Revised January 16, 1963 

Sintering of UO2 in Carbon Dioxide Atmosphere 

As compared with conventional hydrogen sintering, the 
use of slightly oxidizing atmospheres in the high tempera-
ture stage of the U0 2 sintering cycle offers the advantage of 
reducing both temperature and time necessary to at ta in a 
certain fired density. 

Among the possible atmospheres of this kind, steam has 
been widely and thoroughly investigated for many years, 
and several setbacks have shown up together with the 
merits, mainly as a consequence of the vicious nature of 
steam as a furnace atmosphere (1, 2). 

Carbon dioxide, on the contrary, which is free of almost 
all of the disadvantages of steam, has been suggested as a 
sintering atmosphere (3), but, as far as we know, never 
used. We tried it,1 in comparison with conventional hy-
drogen sintering, on a certain brand of depleted U02 powder, 
supplied by the Mallinckrodt Chemical Works, St. Louis, 
Mo., U.S.A., the properties of which are summarized in 
Table I. Sintering cycles, both in H2 and C02 , are shown in 
Fig. 1. 

Pellets were pressed to about 6 gm/cc from a powder 
with 2 wt.% polyethylene glycol, 1 wt.% polyvinyl /alcohol 

TABLE I 
P r o p e r t i e s o f MCW Ceramic G r a d e D e p l e t e d P o w d e r 

Real density (CC14), gm/cc 10.34 
Tapped density, gm/cc 2.18 
Average particle diameter (Fisher), /z 1.28 
Total surface area (B.E.T.), m2 gm"1 3.45 
External surface (Blaine), m2 gm_1 0.42 
Roughness factor 8.47 
O/U ratio 2.03 

and 2 wt.% vegetal stearine. Comparative results in C02 

and H2 are shown in Fig. 2, while the influence of time and 
temperature in C02 is shown in Fig. 3. The sintering activa-
tion energy, calculated according to Jordan and Duwez (4), 
was 40,300 db 1300 cal/mol (Fig. 4), to be compared with 
32,000 db 3200 cal/mol for the same powder in steam (1) and 
76,000 cal/mol in hydrogen {5). Whether this discrepancy is 
due to the inaccuracy of Jordan and Duwez's method or to 
a basically different mechanism for steam and C02 sintering, 
is not known. 

The organic additions to the powder were in general 
deletorious to the final density, as shown in Fig. 5. The 
properties of the C02 sintered pellets (porosity, grain size, 
etc.) compared very well with those of H2 and steam sintered 
pellets of corresponding densities. In particular, the stoi-
chiometry of the final product was insured by the final 
hydrogen cooling and no carbon pickup was detected. 
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