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titles which can be evaluated by 

dh = —aa [ — 

V*. 

dk-2 = —«0 I — 

L<$ = \M<g ( 1 ) 

(15) 

(16) 

The computer values for gain and phase lag of the re-
actor transfer function with flux tilting fa/fa = 1 . 2 present, 
which represents the most severe flux tilting possible in 
the UTR-10 reactor, were not significantly different from 
those for a reactor without flux tilting. Additional break 
frequencies are introduced into the reactor transfer func-
tion by the flux tilting, but they occur at about the same 
frequency for the terms in the numerator and denominator. 
Consequently, no major change in the gain or phase shift 
results. The significant break frequencies still occur at 
X and fi/l. 

The significant conclusions to be drawn from this 
study are: 

1. Flux tilting is possible in the UTR-10 reactor. How-
ever, both fuel regions exhibit the same stable reactor 
period. 

2. Flux tilting can affect the worth of a control rod but, 
due to the limited range of tilting that is possible in the 
UTR-10 reactor, variations of rod worth due to flux tilting 
should not be significant. The maximum degree of flux 
tilting occurs when the regulating rod is completely with-
drawn. 

3. A flux ratio of unity is never attained in the UTR-10 
reactor for an excess reactivity of 0.48%, when the reactor 
is "just critical." The ratio of <f>i to 02 varies from 1.05 to 
1.18 with the higher flux in the region adjacent to the 
regulating rod. 

4. The open loop response of the UTR-10 reactor to a 
sinusoidal variation of coupling, with or without flux 
tilting present, is not significantly different than the re-
sponse of a single region reactor to a sinusoidal variation 
of reactivity. 
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The Convergence of the Equipoise Method 
The difference equations corresponding to the group-

diffusion method may be written in the form 
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Here is a flux-vector whose dimension N is equal to 
the number of groups multiplied by the number of interior 
points in the reactor. L and M are N X N matrices. L has 
nonpositive off-diagonal elements, while the diagonal is 
positive. Due to the facts that the absorption cross sections 
are nonnegative, and that one may describe any multi-
plicative transfer of neutrons from one group to another by 
means of the fission matrix M, the diagonal of L dominates 
vertically (with strict dominance for at least one column). 
M is a nonnegative matrix. For a more detailed description 
of these matrices, see for instance ref. 1. 

One may construct a sequence of splittings 

L = Aj + (L — Aj), ( j = l , 2 , . . . ) (2) 

with nonsingular matrices Aj , and define an iterative 
procedure 

Aj*Qj = {Aj - L + \j-iM)<gj-i ( j = 1 , 2 , - . . ) (3) 

X; = / t e ) (4) 

for determining the numerically smallest eigenvalue X and 
the corresponding positive eigenvector Here it must be 
required that the function / in (4) is chosen so that the 
substitution <QJ = <Q yields Xy = X. 

Now it is well knowm that the scheme (3) converges 
independently of the /-function chosen, if Aj = L, corre-
sponding to one of the usually employed methods, the 
power method. For two- or three-dimensional calculations 
the matrix L is not easily solvable, and (3) is solved it era-
tively by means of the so-called inner iterations. In most 
practical cases (at least for a two-group model) the eigen-
values of the matrix L~lM lie in the vicinity of the positive 
part of the real axis (although examples of reactors with 
negative or complex eigenvalues may be found) (2). Then 
one may use an iterative scheme, a little more elaborate 
than (3), the so-called Chebyshev-method (see for instance 
8). 

The versions of the Equipoise method known to the 
author of this letter (4, 5) all utilize a basic scheme of the 
form (3), (4) with Aj L. Such a scheme may diverge (see 
the examples given below). But usually Aj is chosen so 
that the matrix A]1 (Aj — L) has a small spectral radius. 
In this case (3) could be regarded as an effective first inner 
iteration to solve (1) in the usual way as described above, 
and one has a fair hope of success. 

However, for Aj ^ L the convergence of the scheme 
(3), (4) may depend on the function f . The choice made 
in the Equipoise codes, 

X; = 
eTL<ej 

(5) 

where eT = (1; 1; • • • ;1), seems to be a good one. It ensures 
tha t \ j is positive, if <£>; > 0, without using numerical values 
of possibly negative numbers, as some other methods would 
require. This is a definite advantage, as will be clear from 
the following. 

I t is now assumed (for simplicity) that AJ1 ^ 0 and 
A} — L + X;_i M ^ 0 for all j . The initial vector <qq is chosen 
positive, which ensures that all <$j ^ 0. If the scheme (3)-C5) 
converges, it must converge to the unique positive eigenvec-
tor <£>. If it should diverge, there are various possibilities. 
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First, & may tend to be proportional to a nonnegative 
vector t|r satisfying 

cAit = {A - L + IM)tlr 

eTLvIr I = 
e^Mtjr 

(6) 

(7) 

- U 0 ' " C I ) (9) 

suitable guess, for example <£0 

periodic sequence will be: 
= 0 

/l .228715\ 
^ = 0.771285 ; " ° ' 3 5 1 7 3 2 ; 

_ /0.2712855\ 
" \ 1.7287145/ ; 

(10) 

x2/+1 = 0.710768. 

Even if is chosen very close to <£, the sequence of 
iterates will, in this case, "converge" towards a periodic 
sequence. 

As an example of cyclic divergence with a period of two 
for the Gauss-Seidel method one may take a four-group 
zero-dimensional reactor model with the matrices 

L = 
( 1 0 0 0 
1 1 1 11 1 0 - 1 
1 0 0 1 0 

l-tf 0 - 1 1 

M -

0 1.1 0 0 
0 0 0 1 

0 0 0 0.1 
0 0 0 0 

(11) 

where c ^ 1 is a positive number, and A is a limit for Aj , 
as j —> oo. 

It is seen tha t (6), (7) require eTAt|r = 0, and therefore 
this type of divergence could be excluded in a large number 
of cases. If, for instance, Aj — A is independent of 
j , eTA<gj = eTA<Qj-.i = eTA<Q0, and therefore positive, if A 
is chosen corresponding, e.g., to the Jacobi or the Gauss-
Seidel method. Furthermore, it follows from the assump-
tions made tha t A^j is nonnegative and \\<$j\\ therefore 
bounded independently of j . That is, even if <Qj is nor-
malized, it cannot approach a vector tjr with eTAtjr = 0. 

If the/ - funct ion is not the Equipoise-type, it is generally 
not difficult to construct examples of divergence corres-
ponding to (6). 

Some other types of divergence are possible, even with 
the Equipoise-function, namely the cyclic ones, where the 
sequence of iterates tends to be periodic. One might sug-
gest the possibility of a periodic sequence with a not too 
small period n, so that these n vectors seem to converge to 
a vector i|r However, from (3) follows 

Ita- ^ (IIIAylll)-* I K - L + Ay—iM)<£/_i||, (8) 

so that <Qj "close" to implies (—L + Aj_iM) <£y_i "close" 
toO and, generally "close" to <£. It is probable, therefore, 
that such a bad behavior is unlikely with a reasonably good 
convergence criterion. 

As an example of a cyclic divergence with a period of two 
one many take a two-group zero-dimensional reactor model 
with the matrices 

Corresponding to the Gauss-Seidel method the elements 
of Aj in and below the diagonal are equal to those of L, 
while the others are equal to zero. 

I t is now seen that A;- calculated by means of (5) is a 
function of the second and fourth coordinates of only, 

Ay = 
<Pj,2 

(12) 
1.1(^,2 + <Pj,4) ' 

while these coordinates are connected to the corresponding 
ones of <Qj—i by means of the formula 

U-,21 = JO.lAy_i 1 + A y J IVM.21 
W4J \ Aj_i 0.lAy_i J [(PJ-IAS 

which corresponds to the two-cyclic Jacobi method case 

(13) 

M : - ( V o 1 , ) 
(14) 

Here the choice l21 = — In does not give strict diagonal 
dominance but simplifies the calculations considerably. 
Moreover the fission matrix M is rather unusual. But other-
wise these matrices satisfy the conditions imposed above. 

The method (3)-(5) diverges in the manner indicated, 
if for the example (9) A is chosen corresponding to the 
Jacobi method (A = I) and the calculation is started with a 

In this case the 

It is not difficult, either, to construct examples of 
iV-cyclic divergence for the Jacobi method. I t is con-
jectured, for instance, that a stable cycle of this type is 
generated, if one chooses an L-matrix whose elements are 1 
in the diagonal, —1 in the subdiagonal, and 0 everywhere 
else, while the M-matrix has ones in the first subdiagonal, 
a one in the right upper corner, rather small numbers in 
the diagonal, and zeros everywhere else. 

The examples of divergence given here are a little unusual 
or, rather, most peculiar and should be regarded only as 
illustrations of what types of divergence one should look 
for. I t is felt, however, that some convergence criteria 
ought to be established before one could fully trust the 
Equipoise-methods. In particular, one should investigate 
in which cases a cycle of rather long period is stable, since 
such a cycle, as mentioned above, may give pseudo con-
vergence. 
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