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Letters to the Editors 

A Note on a Simple Method for Acceleration 
of Finite-Difference Group-Diffusion 

Calculations 

I t is well known tha t cell calculations and fixed source 
problems are often very slow in converging in group-
diffusion finite-difference programs. For example, the 
authors recently ran a 225 point , two-group, rectangular 
cell problem on the PDQ-2 (1) program which required 
about 5000 i terat ions1 for a specified pointwise flux con-
vergence; a similar number would likewise have been re-
quired in the EQUIPOISE-3 program ($). The equivalent 
case required 438 i terat ions on PDQ-4 (3). The authors have 
recently introduced a very simple calculational device into 
the EQUIPOISE-3 program which can produce a large 
accelerative effect. In the problem just cited the number of 
i terat ions was reduced to 70 for comparable convergence. 
The basic difficulty in cell calculations is t ha t there is 
usually poor numerical coupling between the groups. Flux 
distr ibutions within groups are readily obtained, but group-
to-group flux ratios are not . The leakage terms in the finite-
difference equations are usually very large compared to the 
slowing-down terms and the neutron balance at a point is 
only slightly affected by errors in the l a t t e r terms. For the 
whole cell, however, the leakage is zero, and the over-all 
neutron balance is often badly out of ad jus tmen t . I t seems 
advisable to include some method of forcing a neutron 
balance between groups. In a two-group problem this is 
done in the following manner . I t must be t rue at 
convergence t ha t the following relations hold: 

Fas t group absorpt ions + fas t group removals = 
Xxi [fast group product ions + slow group (1) 

productions] + slow group removals (upscattering) 

Slow group absorptions + slow group removals = 
Xx2 [fast group productions + slow group (2) 

productions] + fas t group removals 

where X is the reciprocal mult ipl icat ion constant or eigen-
value, and xi and xi are the f ract ions of fission neu t rons 
thrown into groups 1 and 2, respectively. At an intermediate 
stage in the calculation these balances do not hold. At the 
completion of a given i terat ion in EQUIPOISE-3 , the 
eigenvalue X and a "dr iv ing f a c t o r " D are found which will 
make the equat ions balance. The driving factor is a number 
by which all the fluxes in a given group are mult ipl ied. To 
find X and D, the following equations are solved simul-
taneously. (We assume here t ha t D is applied to the slow 
fluxes.) 

1 Mesh sweeps or inner i terat ions divided by 2. 

Fas t group absorpt ions + fas t group removals — D 
[slow group removals] = X xi [fast group produc- (3) 

t ions + D (slow group productions)] 

D (slow group absorptions) + D (slow group 
removals) — fas t group removals = X X2 [fast (4) 

group productions + D (slow group productions)] 

By dividing Eq . (4) by Eq . (3), X is el iminated and D may 
be obtained. Having D, X may then be computed by sub-
s t i tu t ing for D in Eq . (4). The new slow fluxes are D t imes 
the old slow fluxes. In this manner , group balances are 
forced at each i terat ion, and as the calculation proceeds, 
the value of D approaches 1. This scheme is easily extended 
to a larger number of groups, but the driving fac tors are 
somewhat more difficult to obtain. Following the elimina-
tion of X and set t ing one of the driving factors equal to 1, 
a set of simultaneous linear equations, one less than the 
number of groups, must be solved. As with two groups, 
degenerate cases can occur in which there is no numerical 
coupling between some of the groups and any of the others . 
These can usually be avoided by inspection. As a practical 
mat te r , safeguards should be built into a machine program 
to prevent the use of zero or infinite driving factors . 

There is not much gained in using this device in noncell 
calculations. The authors have also experimented with 
similar methods in which driving factors are computed for 
subregions of the reactor (in a manner reminiscent of Kron ' s 
" t e a r i n g " method) bu t no improvement over the much 
simpler group relaxation scheme we have just described 
was obtained. We have, however, used the tear ing or block 
relaxation procedure to advantage in t ranspor t calculations 
in slab geometry (4). In constant source problems, the 
driving factor would be found in a one-group problem by 
solving the balance equat ion: 

D [absorptions + leakages] = source (5) 

(For several groups, the driving factors would be found by 
solving a set of similar equations simultaneously.) The 
reader is referred to a paper by Kellogg and Noderer (5) 
which discusses the mathemat ics of this technique in con-
s tan t source problems. Use of block relaxation (tearing) 
ra ther than group relaxation may be advantageous, b u t we 
have not done any calculations to test this . 
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C - l f c i L (3) 

When the perimeter has a complex shape, it can be divided 
into partial perimeters, giving 

C : Ci = adU, L = Z U (4) 

M E L V I N T O B I A S 

D A V I D R . V O N D Y 

T O M B . F O W L E R 

For the case of rings, Fig. 1, Eq. (1) gives for the inner 
perimeter of the moderator ring j ^ 1, n, ot radius r,,-, 
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Dancoff Correction for Several Infinitely 

Long Cylindrical Rings 

Calculations have previously been made of the Dancoff 
correction for fuel rods and plates immersed in an infinite 
moderator (1-5) and for an infinitely long cylinder of mod-
erator in fuel (1, S, 6). In this letter we describe the calcula-
tion of the Dancoff correction for several infinitely long 
cylindrical rings of fuel and moderator. 

In deriving the equations for the Dancoff correction, we 
have assumed tha t : 

(i) the source density of resonance neutrons is constant 
in the moderator, 

(ii) the fuel is black to resonance neutrons, 
(iii) single collisions with moderator atoms remove 

resonance neutrons from the resonance energy range, and 
tha t 

(iv) the lumps are infinitely long. 
Using the above assumptions, Carlvik and Pershagen 

CO have obtained the following expression for the Dancoff 
correction; 
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Eqs. (5) and (7) become 

r, o 
C,i = — B(2,- r,o, r„/rl0) (11) 

(1) 

where L is the fuel perimeter, 2 is the total macroscopic 
cross section of the moderator, Kn is the Bickley function 
of third order (7), X is a chord drawn between two points 
on L such that it passes through moderator only, and 0 
is the angle between the chord and the normal to L. See 
Fig. 1. 

Equation (1) represents the average value of 

Cl0 = A(2,rl0, rji/r,o) + B(2,/-)0 , rn/r,0) (12) 

In Eq. (10), the transformation sin /3 = (r„•/?•,0) sin /3' has 
been used. 

When j = n, X„j = oo and C„i = 0. 
When,/ = 1, there are three possibilities: 
(i) If the central region is fuel, Eqs. (11) and (12) apply. 
(ii) If the central region is the same moderator as region 

1, then r„ / r , 0 = 0 and Cm = A(2ir1 0 , 0), having been repre-
sented by Thie (5). 

(iii) If the central region is a void region ot radius, m , 
separated from the moderator of region 1 in some manner, 
then 
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