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FIG. 1. Variation of total and interference scattering in 
the U238 resonance near the resonance energy E0 = 102.8 ev 
for T = 300°K. 

potential scattering cross section per uranium atom ap , 
as the potential scattering cross section of the uranium 
atom itself is equal to 10 barns. In all three equations con-
sidered, (2), (3), and (4) (exact, NR, and NRIA), the same 
numerical integration with the same lethargy steps is used. 
Taking the calculated values for two temperatures, the 
temperature coefficient of the effective resonance integral 0 

I(T) = 7(T0)[1 + P(VT - VTo)}. (11) 

The results in the columns denoted by NR-NRIA are 
obtained calculating the six broadest resonances (6.68, 
21.0, 36.8, 66.3, 102.8, and 190.0 ev) according to the NRIA 
approximation and the remaining 49 resonances according 
to the NR approximation. Comparing the results of the 
NR and of the NR-NRIA approximations with the exact 
results for H20, it seems that the introduction of the NRIA 
approximation does not decrease very much the error of 
the pure NR approximation. 

Comparing the exact resonance integrals for three 
different moderators at the same potential scattering cross 
section per uranium atom ap , one sees noticeable differences 
between them. As indicated in eq. (2), these differences are 
caused by different maximal lethargy losses per collision on 
moderator atoms en = In \/an and by the different values 
of the scattering cross sections 2Sn of the elements of light 
and heavy water. The effects are somewhat smaller if one 
also considers the interference between the potential and 
the resonance scattering. It is interesting to note that the 
exact temperature coefficient practically does not vary with 
the moderator properties but is noticeably affected by the 
interference scattering at small values of the potential 
scattering per uranium atom <rp . As the increase of the 
resonance integral caused by the interference scattering is 
stronger at lower temperature, the temperature coefficient 
becomes smaller if one also takes into consideration the 
interference scattering. (Illustration for a resonance with 
relatively large interference scattering is given in Fig. 1.) 
The exact calculation compared with the NR approxima-

tion requires a reasonable increase of the machine time 
depending on the number of elements in the mixture. 

We wish to express our gratitude to Mr. H. J. Siegert for 
carrying out calculations on a digital computer. 
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Velocity Dependent Neutron Transport Theory 
with High Energy Sources 

In a recent paper Conkie (1) described a method of 
finding analytic approximate solutions to the Boltzmann 
equation dependent on both position and energy. Conkie's 
work was confined to the problem of thermal neutrons. In 
the present paper we wish to extend the method to the case 
where high energy neutrons are produced in the moderator. 
We use plane geometry and assume the moderator to be a 
slab occupying | x | ^ Xo and surrounded by vacuum. 
Heavy gas moderation is further assumed, with no capture, 
and with the neutron sources isotropic and monoenergetic 
and constantly distributed over the moderator. 

The neutron velocities thus cover a broad interval. As 
in the paper by Conkie we are mainly interested here in 
obtaining the thermal neutron distribution. We therefore 
calculate the slowing down density at some velocity v0 
close to but greater than \/2kT, and this density is then 
used to give the source term for the thermal region. The 
slowing down solution can be found in different ways. We 
use the well-known Greuling-Goertzel method (2). The 
source velocity is chosen to be 104 \/lkT and the moderator 
mass M is put equal to 3.6 to represent D20 (3). The reason 
is that we wish to perform the calculations for a moderator 
mass different from 1 but not too big. Details of the calcula-
tions can be found in ref. 4. Wc find the distribution of 
neutrons at v0 = 3.355 V2kT to be 

Ns(x, v, a) = lF0(x) + (1) 

where 

F0(x) = 2.154 - 2 exp(-Xxo) 

[0.6773z sinh x - (2.140 + 0.6773zo) cosh \x] 
(2) 

— 22.36 exp(—Xix0) cosh \ix + 2 exp(—X2x0) 

* Present address: Allgemeine Elektricitaets-Gesellschaft 
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[2.915s sinh \2x + (7.101 - 2.915x0) cosh \2x] 

Fi(x) = 2 exp(-Xxo) 

[0.5510x cosh \x - (1.344 + O.551Ox0) sinh \x] 

+ 8.708 exp(-XiXo) sinh \ix - 2 exp(-X2£0) 

[0.6570z cosh X2x + (2.889 - 0.6570z0) sinh X2x] 

X = 1.670, Xi = 0.8888, X2 = 0.5362 (4) 

(3) 

Assuming now that (1) gives the distribution around v0 

the Boltzmann equation reads 

dN(x, v, fi) 
Vfi (- F(v)N(x, v, ju) 

dx 

= J K(v' v)N(x, v', MO dv' dn' 

r(M+l/M-l)v 

(5) 

+ / *> Vc\ 
Ks(v' -> v)Ns(x, v', /*') dv' dp' 

where Ks is the slowing down kernel and K(v' — v) is given 
by 

Kiy' -> v) 

(M + l)2 cq V2 [-M(v2 - v'2 + P2/M)2 

4M3/2 3̂/2 | p | eXP 4 P 2 

(6) 

N{x, v, = 2 aJ exP (9jX)fj{v, m) (7) 

/ dv dtxvrfjiv, n)jk{v, m) = 0 for j ^ k. (8) 

dx 
= exp ( 

rvo /.+1 

-grys) / dv t 
^(M-1/M+1)V() J-1 

dv / /*) 

/.(M+1/M-1)i> 
/ dv' / dn'Ksiv'^v)Ns{x,v',n'). 

ha J-1 

= J[/i0(») + 3|i/Vl(l>)]. (ID 

For the velocity dependence we choose, like Conkie, a 
Tchebycheff polynomial expansion 

/ i0(») = v exp {-v*/2)*Zbin>Tm*{y), 

JAv) = ^ exp (-v2/2)ZcjmTm*(y) 

(12) 

Here P is the momentum transfer and o-0 the bound atom 
cross section. 

In order to solve Eq. (5) we now adopt the following 
idea given by Conkie. The solution of the source-free 
equation is written 

where the /x-dependence is given by a spherical harmonics 
expansion and the ^-dependence by a polynomial expansion. 

If the symmetrized kernel is used it is easily shown that 
the fj(v, fx) fulfil an orthogonality relation 

This fact can be used to find a solution for the inhomoge-
nous equation by the method of variation of constants. 
We thus try a solution of the form 

N(x, V, At) = £ aj(x) exP (9j x ) f j ( v , A*) (9) 
j 

giving for the determination of aj(x) 

where y = (v2 + ^4)/(l + v2 + v4). To obtain a Pi-approxi-
mation we have to calculate the moments of the kernel (6) 

K(v' - v) = h[Ko(vf - v) + S/jlKI (v
f

 - v)} (13) 

It seems that no explicit expression for K\{v' — v) has been 
published previously. The calculations may be found in (4). 

As we have assumed no absorption, two of the eigenvalues 
gj will be equal to zero and therefore the solution of the 
total equation (5), according to (9), is 

N(x, v, M) = iilA(x) + B(x)x]f00(v) + 3»B(x)foi (v)} 

+ Ef« j(x) exp (gjx)fj(v, /*) 
3 = 1 

(14) 

a-j(x) exp (-gjx)f^j(v, M)} 
where 

f.j(v, M) = ifjo(v) - ififji(v). (15) 

The undetermined functions A(x), B(x), and a±J-(x) 
are obtained according to (10). On account of the simple 
forms for the P0- and Pi-moments of the slowing down kernel 

Kso(v' -

KSI(V' -

•v) = 

' V ) = 

(M + l)2 v 
2M ' v' 

(M + l)2 

2 M 
M + 1 v_ 

~v' 
M - 1 v' 

2 v 

(16) 

and the slowing down distribution, it follows immediately 
that the integrations over v'} n, and can be performed 
analytically without difficulty. The ^-integration, however, 
is more complicated and one has to rely on a machine. It 
follows from (10) that the result depends on the choice of 
vq . The integration over x, finally, is simple. The ten con-
stants of integration have to be determined by the boundary 
conditions 

N(x0 , v, fx = - 1 / V 3 ) = 0 (17) 

(10) 

The boundary conditions we use at the interface in our 
example are the same as Conkie's, that is, a modified ver-
sion of Mark's boundary conditions. It should be noticed 
that the symmetry of the problem requires N(x, v, p.) = 
N(-x, v, 

We thus first have to determine the functions fj(v, ju) 
in (7). This is done in a Pi-approximation and we write 

for all v, i.e., for all coefficients in the Tchebycheff poly-
nomial expansion of N(x, v, n). This gives ten equations. 
A further condition that will determine v0 is that at this 
point of connection of the two energy regions the slowing 
down solution should fit continuously to the thermal solu-
tion. 

The numerical calculations giving the solution of the 
homogenous equation were performed with the Chalk 
River Datatron using Simpson's rule to evaluate the 
integrals involved. As a result we obtain for the absolute 
values of the eigenvalues gj : 

0, 1.058, 4.504, 0.7927, 1.685, 1.834, 1.383, 2.110, 1.577, 1.754 

The second lowest eigenvalue is probably too small, as one 
could expect that it should be greater than 1 in accordance 
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with one-group spherical harmonics theory (5). It is in-
teresting to compare with Conkie's result as our calcula-
tions have been done similarly. He also obtains one eigen-
value that is less than but quite close to one. The only 
difference between our calculations is that we here regard 
a moderator with a mass greater than one, which makes 
the kernel more complicated. However, as Conkie points 
out, it might be that the use of the Pi-approximation dis-
torts the eigenvalue spectrum. The rapid oscillations in the 
higher Tchebycheff polynomials certainly makes it doubtful 
if the use of Simpson's rule is the best choice. 

The equations (17) have been solved for xQ = 10 and 
x0 = 100 for different values of v0 between 2.5 and 4 in order 
to make the difference between the thermal density and 
the slowing down density as small as possible. For x0 = 10 
it was found that the point of connection should be close 
to vo = 2.96 and for x0 = 100, vo = 3.50 (the errors at these 
points are 0.003 and 0.009 respectively). We obtain at the 
interface 

9 

Ko(xo , v) = V* exp ( - ^ 2 ) E akTk*(y) (18) 
k = 0 

and we get for the coefficients a* : 

Xo ao ai dl «3 a4 

10 14.3 9.37 3.56 5.28 3.09 
100 312.0 122.0 -30.2 31.6 -6.00 

d'o at a-i as a9 

3.38 1.99 1.79 0.97 0.37 
13.4 -0.70 6.12 0.18 1.68 

to me in a discussion with Drs. B. Davison, W. R. Conkie, 
and S. A. Kushneriuk, all of whom have given me con-
siderable help and encouragement. I am further much in-
debted to Drs. L. G. Elliott and T. D. Newton for their 
kind interest and their efforts to make my visit at Chalk 
River a pleasant experience. My thanks are also due to the 
members of the Theoretical Physics Branch for many 
stimulating discussions and for help in performing the 
numerical calculations. 
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For XQ = 100 the convergence is good at the interface. 
Inside the slab, for x = 0, the density is a pure Maxwellian, 
given by 

N0(x = 0, v) = 30600?;2 exp ( -v 2 ) , z0 = 100. (19) 

However, it is certainly much more interesting to obtain 
the neutron distribution for a slab that is only a couple of 
mean free paths thick. Unfortunately, even for x0 = 10, 
the convergence is not good enough at the interface as is 
easily seen if one draws the corresponding curve, which 
shows small oscillations near the maximum. Conkie already 
remarked that the expansion variable used might not be the 
optimum choice and even the use of the Tchebycheff poly-
nomials is somewhat arbitrary. It would also be convenient 
if one could use fewer terms in the expansion although that 
is not a major trouble with the big calculating machines. 
The problem of finding more suitable functions is now being 
considered and the hope is to let these be generated by the 
Boltzmann equation. There is another limitation to the 
method that will distort the distribution, and that is the 
Pi-approximation in n. This should be of importance at the 
interface of thin slabs. In our case of x0 = 10 the density 
inside the slab rapidly becomes convergent and it would 
therefore be worth while to try these calculations in a 
P3-approximation. The computations are not very com-
plicated, and once more suitable expansion functions 
have been found it should be possible to study more realistic 
problems, e.g., including absorption. 

A C K N O W L E D G M E N T S 

This work started during a one-year visit to the Chalk 
River Project on an N.R.C. fellowship. It was suggested 

A N o t e on the Measurement of the U2 3 8 

Cadmium Ratio 

It is customary to obtain the U238 cadmium ratio (CR) 
in a lattice by measuring the ratio of the U238 neutron cap-
ture induced activities in two uranium foils, irradiated 
bare and cadmium covered respectively in split fuel rods. 
The activity of the former is proportional to the sum of the 
thermal (subcadmium) and the epithermal (epicadmium) 
capture rates, the activity of the latter being proportional 
to the epithermal capture rate only. 

It is well known that, because of the high U238 neutron 
resonance capture cross section, the epithermal neutron 
flux is more strongly depressed in the center of the fuel rods 
(and in the center of the foils) than is the thermal neutron 
flux. It follows that (roughly speaking) the thermal captures 
occur in the whole volume of the foils, whereas the epi-
thermal captures are more concentrated near their outer 
perimeter. It was remarked some time ago (1) that the dif-
ferent spatial distributions of the capture in the two foils 
might be a source of error in the measurement of the CR. 
Self-absorption and geometry effects could cause the re-
sponse of the counter to radiation produced near the foil 
periphery to be different from the response to radiation 
produced near the foil center. Nevertheless, recently pub-
lished experimental results (2, 3) obtained both by measur-
ing foil activity directly and by homogenizing the foils 
first seem to agree reasonably well. 

We have carried out a technique study with a light water 
moderated lattice of 1.15 wt. % U235 enriched metal rods of 
0.387 in. diameter, at a 3:1 H20/U volume ratio. We have 




