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letters to the Editors 

Eigenvalues for the Wilkins Equation 

In the study of thermalization problems based on the 
heavy gas scattering kernel for a 1/v absorber one is often 
faced with the task of solving for the eigenvalues, a 2, 

of the following equation 

•</>" + •</>' + [1 + a 2
- ~/(4V~)]q, = 0 (1) 

where • is the energy in units of kT and ~ is the usual ab­
sorption parameter, i.e., ~ = 4rra (kT) / (~rro). The general 
problem has been considered by many investigators (1-5). 
In particular Michael considered the numerical solutions 
of the secular equation resulting from Eq. (1) by assuming 
solutions of the form </> = Lm Am • exp (-.)L~0 (.) 
where L:,;J (•) are the associated Laguerre polynomials. 
It can be shown that this is equivalent to a variational 
solution and hence the calculated fundamental eigenvalue 
is necessarily an upper bound to the true eigenvalue. More 
recently de Sobrino and Clark (6) published an extensive 
study dealing with the solutions of Eq. (1). Included in 
their paper is an expression for the eigenvalues of Eq. (1) 
in the form 

(2) 

with analytical expressions for the coefficients an and b,. . 
In this note we develop a similar expansion for the eigen­
values including the coefficient of the cubic term in ~­
Numerical values for the coefficients in Eq. (2) are given. 
'J.'he fundamental eigenvalue is given to the cubic term in 
~- In addition, a formulation of the eigenvalue in terms of 
the WKBJ method is also included. In his paper, Michael 
(3) points out that calculations of this type have been pre­
viously carried out by Corngold. 

To solve Eq. (1), the flux, ¢(•), and a 2 are expanded in 
powers of ~. i.e., ¢(•) = L ~nq,n(•) and a 2 = L ~nan. 
Substituting the above in Eq. (1) and equating like powers 
of ~ gives 

(3) 

where the right hand side vanishes for n = 0. These equa­
tions are solved recursively using the conditions of vanish­
ing flux at • = 0 and co. If a0 = k where k = 0, 1, 2, · · · , 
then c/>o is given by Ak • exp (-•)L~1 J(•) where the Ak 
are arbitrary. This solution satisfies the homogeneous 
boundary conditions, For the solution correct to the first 
order in~. consider Eq. (3) with n = 1; that is, 

(4) 
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The complimentary integral is given by 

Bk • e-•Lk0 (•) (5) 

and for the particular integral assume a solution of the 
form 

c/>1 = L bn • e-·L~1 l (•) (6) 
n 

where the Bk are arbitrary and the bn are to be determined. 
Substituting Eq. (6) into (4), multiplying by L)1l(•) d. 
and using the orthogonality relation, 

1"' •e-'Lk
1
J(.)L?J(,,) dt = (1 + k)ok; , 

gives 

(k - j) (1 + j)b; = Ak[ (1/4)v}k1 
- a1(1 + k )ok;]. (7) 

Solving Eq. (7) gives for 

where 

k~j 

k = j 

and 

(8) 

bk = arbitrary 

a1 = vk"k
1
/[4(1 + k)] 

(9) 

Therefore, summarizing our results, the kth eigenvalue to 
the first order in ~ is given by 

and similarly the kth eigenfunction is given by 

c/>k(•) = L: b;k • e-•L)0 (•) 
j 

where 

b;k = ~v;}t /[4 (k - j) (1 + j)], k ~ j 

= 1, k = j. 

(11) 

(12) 

(13) 

The arbitrary constant in Eq. (12) was determined by 
normalization. Carrying out calculations similar to the 
above, the kth eigenvalue to the third order in ~is given by 

~vk"f ~' I (v -:-kl)' 

ak' = k + 4(1 + k) + 16(1 + k) ~ (k - j) (1 + j) 

~· { 
1 (vjk1 )(v;;:j)(vk"~) 

+ 64(1 + k) ~ (k- j)(1 + j)(k- n)(1 + n) 
(14) 

(vk"f) "' (vjf) 2 
} 0 4 

- (1 + k) 7' (k - j)2(1 + j) + (~ ) 
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T A B L E I 

E I G E N V A L U E S 

k2 — k + aiA + a2 A2 + A3 A3 + 

Order, k ai d2a a-ia 

0 0.221557 -0.0081912 d= 4 0.00049 zb 2 

1 0.193862 -0.00408 ± 1 
2 0.176553 -0.00253 =b 2 
3 0.164220 -0.00175 zb 2 
4 0.154768 -0.00130 d= 3 
5 0.147176 -0.00101 d= 3 

6 0.140878 -0.00081 zb 4 
7 0.135525 -0.00067 =b 5 
8 0.130892 -0.00057 db 6 
9 0.126821 -0.00049 =b 7 

10 0.123202 -0.00042 d= 8 

11 0.119953 -0.00037 =b 9 
12 0.117012 -0.0003 : Jz 1 
13 0.114330 -0.0003 : t 1 

a Note the uncertainty applies to the las 
digit reported. 

T A B L E I I 

F U N D A M E N T A L E I G E N F U N C T I O N 

= YJ dJQ€€fLf\e) 
i 

djo = <2iA(1 + a 2 A ) , j 0 

DM = 1 + A,2 A 2 

j ai d2a 

0 — -0.003468 
1 0.0553892 -0.0164 ± 1 
2 0.0138477 -0.1582 =b 1 
3 0.0057697 -0.2070 d= 3 
4 0.0030290 -0.2317 =1= 4 

5 0.0018174 -0.2467 =b 5 
6 0.0011900 -0.2567 d= 7 

° Note the uncertainty applies to the last significant 
digit reported. 

where the primes on the summations indicate j, n ^ k. 
The eigenfunction to second order in A is given by 

-fT u> / = X) djk € e eLj1} (e) 

where 

and for k ^ j 

Avjk djk A2 

Mk-j)(i+j) Mk-jKi+j) T X 

Vnk Vnj A?Vkk Vjk 
(k - n) (1 + n) 16(k - j)K 1 + k) (1 + j)' 

Before proceeding with the numerical evaluation of the 
above some comments on the matrix elements vj£ are neces-
sary. Using the series definition for the Laguerre poly-
nomials 

Lf^ = ± Ut 1) (-*)«/»! 
n=0 V 7 

Eq. (10) becomes 

= 1 1 K-l)n/(nI)] C x ^ e ~ * L £ \ x ) d x . (16) 
n=0 V n I Jo 

The integral in Eq. (16) is of the standard form and is given 
by Bateman (7), substituting for the integral, Eq. (16) 
becomes 

significant . = V U + 1 ^ 
^o \i ~ n ) 

( ~ L ) W T(k - n + j)r(N + 3 / 2 ) 

n! /b! T(| - n) ( 1 7 ) 

By the use of the generating function for the Laguerre 
polynomials, Hafele and Dresner (5) have previously 
derived an equivalent expression for the vjk's. Using the 
definition for the gamma functions and noting that for 
k ^ n 

T(k - n + i) (~l)n(2k - 2n)l(2n)l 
r ( | - n) {2Hk - n)\n\\ (18) 

The restriction that k ^ n introduces no particular diffi-
culty since vjk is symmetrical. Therefore, the final expres-

T A B L E I I I 

C O M P A R I S O N OF E I G E N V A L U E S 

CXQ2 «i2 A ..,2 
A 

M G M G M G 

0.25 0.0549 0.05488 1.0483 1.0482 2.0441 2.0440 
0.5 0.1089 0.1088 1.0961 1.0959 2.0880 2.0876 
1 0.2140 0.2138 1.1904 1.1898 2.1754 2.1740 
2 0.4144 0.4142 1.3736 1.3714 2.3471 2.3430 

3 0.6031 0.604 1.5492 1.5449 2.5135 2.5069 
4 0.7819 0.786 1.7178 1.7102 2.6740 2.6657 
5 0.9523 0.964 1.8799 1.867 2.8286 2.820 

10 1.7124 1.88 2.6156 2.531 3.5359 3.513 

dkk = 1 — 
A2 

•X 
{vjiY 

32(1 + k) v (ft - j)K 1 + j) (15) 

Note: The values designated by M were calculated by 
Michael, for the most part they were obtained from the 
diagonalization of a 5 X 5 matrix. G indicates the values 
obtained by this work. 
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sion for Vjk is given by 

-i 0' + l)r(i) ^ Vki = - -22hk\ 
] r 
n=0 

(2n + 1) !(2k - 2n)! (2n)! 
k ^ j (19) 

L?\X) = £ Vfn LP(X) 
\J X S i (l + ») 

J ' +1 = E (vjk)2 

V(t) 

T A B L E I V 

C O M P A R I S O N O F E I G E N V A L U E S 

( j -n)! (n + l)(n !)4(& - n) I22n+1' 

where r ( J ) = \ / i r . Examination of Eq. (19) shows that 

Vkk —> \/lc In k as k —» . (20) 

Using Stirling's approximation to the factorials similarly 
it can be shown that 

% = 1 / V S , fc.»l. (21) 

The following relation involving the vjk's is of interest in 
numerical calculations. By orthogonality it can be shown 
that 

WKBJ Michael 

0.1" 0.0242 0.02208 
10 1.720 1.7124 
50 5.88 

500 30.2 

(22) 

Squaring the above and multiplying by x exp (—x) and 
integrating gives 

(23) 

Equation (23) is useful in obtaining crude estimates of the 
convergence of sums involving the matrix elements vjk. 

With a tabulation of the vif's it is a simple matter to 
calculate the sums as given in Eqs. (14) and (15). For the 
fundamental eigenvalue, k = 0, the expression for a2 
is readily evaluated by summing the first several terms 
exactly and then summing the remaining terms by the use 
of Euler's summation formula using Eq. (21). The expres-
sion for as for k = 0 is evaluated in a similar fashion and 
also by recognizing that vjk is a decreasing function • for 
increasing j for j > k. The higher order eigenvalues were 
evaluated only to the second order in A. The expression 
for ai was evaluated by summing the first 40 terms exactly 
and then using Euler's summation formula to get an upper 
estimate of the remainder. The coefficients for the eigen-
values are summarized in Table I. It should be noted that, 
as the order of the eigenvalue increases, the coefficient 
of A2 decreases quite rapidly and that for moderate val-
ues of A the first order coefficient ai is sufficient. Using 

° Equation (14) gives a value of 0.022068. 

the asymptotic form for vJk, Eq. (20), and applying l'Hos-
pital's rule it should be noted that ai —» 0 for k —> <*> and 
hence the eigenvalues approach integers. 

The second order correction term for the eigenvectors 
was evaluated in a similar manner to the method used for 
the eigenvalues. The expressions for the eigenvectors are 
given in Table II. 

A comparison between the eigenvalues calculated in this 
work and those calculated by Michael is given in Table 
III . For the most part the values given by Michael were 
computed by the diagonalization of a 5 X 5 matrix. The 
eigenvalues for A = 10 were obtained from the diagonaliza-
tion of a 20 X 20 matrix. It should be noted for values of 
A up to about 5, the perturbation technique gives eigen-
values which are in agreement to better than 1%. 

For large values of A, the perturbation technique is of 
limited value and other techniques must be used. The 
eigenvalues can be approximated by the WKBJ method as 
developed for the solution of the eigenvalues of the one-
dimensional Schrodinger wave equation for bound par-
ticles. The procedure followed here is that used by Morse 
and Feshbach (8) as developed for radial wave equations. 
The eigenvalues for Eq. (1), an

2 = k2 — 1, are given by 
the solution of 

r H M ^ j } 
dt = (n + 4)7r (24) 

FIG. 1. "Potential function" for the Wilkins equation 

where t2 and h are value of t for which the integrand of 
Eq. (24) vanishes. A plot of the "potential function" 

t2 1 A 

^ • - w + ii + e o 

as given in Eq. (24) is shown in Fig. 1. For zero absorption 
the above integral can be integrated in closed form, giving 
the condition that J:2 = n + 1 or an

2 = n. The exact eigen-
value for the case of zero absorption. For A ^ 0, Eq. (24) 
can be expressed in terms of elliptic integrals of the third 
kind, an intractable form for numerical calculations. The 
integral was evaluated numerically using Simpson's rule 
for several values A and the results are given in Table IV. 

The plot of the potential function, V{t), as given in 
Fig. 1 is convenient for estimating the turning points, h 
and h , and the initial value of the eigenvalue. For A = 10, 
the agreement with the value as calculated by Michael is 
better than 1%. Examination of Eq. (24) shows that for 
large values of k2, the term (A/21) in the integrand can be 
neglected in comparison to the other terms and, hence, the 
integral is equivalent to the case of zero absorption for 
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large values of n. It can, therefore, be concluded that the 
eigenvalues approach integers; i.e., an

2 —> n for n —> <*>. 
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4>Vi 1(rv-.i) = 4>v%(rv-1) = a* ln rv-1 + b" (5) 

Dl V* ^ - ( s L + ^ + Z 
\ j—i+i / y=i 

<i>i 
(1) 

+ Wi+j = 0 
3=1 

then 

</>I(r) = o ! ln r + ft (3) 

This system of equations determines a*, b\. When Dv% , 
a," —> 0, a flux 4h bVi = constant is obtained. 

Depending on whether the net current flow through the 
gap is inwards or outwards, this theory overestimates or 
underestimates the fraction of neutrons entering the void 
from the outer interface which reaches the inner interface. 
Actually, current flow through the gap produces a discrete 
jump in the value of the flux which has been calculated by 
Newmarch (3) to be 

with 

and 

rvDViV<t>Vi(rv) - rv-iDViV<jH (rv-i) = 0 

a = 1 
rv__i 2 rv-i („ rJ_iY' 

i 11 T \ rv 7r rv \ rv J 

(6) 

(7) 

(8) 
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Effective Diffusion Coefficient in Void Regions 

The multigroup diffusion theory for a virtually critical 
medium, with homogeneous regions, gives rise to the fol-
lowing system of differential equations (1, 2). 

For this correction to be applied more easily, an effective 
diffusion coefficient in the void can be considered, which 
must satisfy Eqs. (4) and (6). Equation (5) can be used to 
determine and Eq. (7) is always satisfied along with 
Eq. (3). 

Substitution of Eq. (3) into (6), gives 

, _ 2aDT1 V4h (rv_i) 
lii(rv/rv-i) 

which substituted into Eq. (4), gives in turn 

rv-i \n(rv/rv_i) Dl „ = 
2a 

• = f(rv_i/rv) 

(9) 

(10) 

with 

i = 1, 2, • • • , g (number of groups) ; I = 1, 2, • • • r (num-
ber of regions), with the boundary conditions of continuity 
of fluxes and currents at the interfaces. 

This system, when applied in one dimensional cylindrical 
geometry to a void region, I = v, with S®, = 0, x — a, 
i —> j, f , and D\ —> oo (it is assumed to be arbitrarily large 
in the codes WANDA, AIM-5, •••),• results in 

= r f r ^ U 0 (2) r dr \ dr J 

Dlu —> 00 , if rv-1 -> rv ; Dv
e{{ = 

= (.1 =b 0.2)^-1 , if 0, 15 ^ rv^/rv (11) 

^ 0, 85 

Therefore, in one-dimensional cylindrical multigroup dif-
fusion equations, void may be represented by purely dif-
fusive media, with cross sections equal to zero, and effective 
diffusion coefficient given by Eq. (10). In this way the New-
march correction is taken into account. 
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