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Once f(p) has been obtained, these simple first order dif-
ferential equations can be solved numerically for each I. 
Bessel's equation can be used to derive a differential equa-
tion that provides a rapid numerical method for deter-
mining/(p): 

/"(p) +^2 + 2 a a(2 + a) 

of equal powers of p, we obtain: 

a = 0, b = l/«, c = l/(8a) - (/ + | )A 2 if <*p » 1, 

(4) a = 1/(1 + §),& = (i)/(i + c = (Tj5)/(f + I) (11) 

if a = 0. 

Finally, it should be mentioned that if /(£) is generalized 
to a form that allows yj/(x) to be the Doppler broadened 
resonance function, Eqs. (3, 4, and 6) will still be valid. 
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For higher values of n, Ain(p) can be obtained by dif-
ferentiating Eq. (2) : 

— 2Al,n\-l (p) = aAl,n(p) + A'l+I,n(p), (6) Treatment of Annular Voids in Diffusion Theory 

where, as in Eq. (5), the prime means a derivative with 
respect to p. Equation (6) can be used in conjunction with 
Eq. (4). For a given accuracy, the use of successively higher 
derivatives would, of course, severely limit the coarseness 
of the mesh size used, but since A in (p) vanishes very rapidly 
with p as n increases, high accuracy here is not really re-
quired. 

All that remains to be done is to find starting and possible 
ending solutions for Eqs. (4) and (5). We note first of all 
that the homogeneous solution to Eq. (4) is pm , which 
becomes infinite for large p and, therefore, must have a 
zero coefficient. For small p, multiplying the power series 
expansions for e~(1+a)p and 70(p) together gives 

f(p) = 1 - (1 + a)p + [}(1 + «)2 + IIP2 (7) 

Aio(p) = Bi+l(p) - (1 + a)Bi(p)p 

+ » ( ! + a)2 + }]i^-i(p)p2 

where the functions Bi(p) are defined: 

Bi(p) = 1 // if 1 * 0 

= — Inp if 1 = 0. 

For large p, the properties of 70(p) tell us that 

(8) 
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By writing 

AM = e~af> 
V2Trp 

The usual one-dimensional multigroup diffusion codes 
can be used to calculate configurations with annular void 
regions by assigning a fictitious diffusion coefficient to the 
void region. The recipe is suitable for both infinite cylinders 
and spheres. Basically, the method is to calculate a diffusion 
coefficient for the void region which preserves the annular 
void boundary conditions consistent with the neutron 
streaming problem in the P-l approximation. 

In the cylindrical case, let us assume that the void region, 
ri ^ r ^ r2 , is characterized by some value of K2 = 2a/7) 
where 2a « D. Diffusion theory gives 

0v(r) = AIQ (icr) + BKo (ar) Ti S t ^ r>z (1) 

where <f>v(r) is the void neutron flux and 70 and KQ are the 
modified Bessel functions. For « 1, Eq. (1) becomes 

The power series expansion for Aio(p) can be obtained by 
inserting Eq. (7) into Eq. (4) and equating the coefficients 
of equal powers of p: 

4>v(r) = A + B In nr. (2) 

By differentiation, B can be expressed as r(d<£v/dr). Using 
the continuity of the neutron current across the interfaces 
at n and 7*2 , we have 

D V9^ /1 D \3r /2 
(3) 

where D\(Di) represents the diffusion coefficient for the 
region r < r\(r > r2), D is the void "diffusion coefficient" 
and the derivatives are evaluated for the diffusing regions 
at the void interfaces. Using Eqs. (2) and (3) and assuming 
continuity of the neutron flux at the interfaces gives 

(9) 

(10) 

4>(n) (4) 

inserting the expression in Eq. (4), and equating coefficients 

The P-3 approximation to the neutron streaming problem 
across an annular void in cylindrical geometry has been 
derived by Tait (1). Using only the P-l terms and assuming 
the diffusion approximation, i.e., that the net neutron cur-
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rent is given by —D(d<f)/dr), Tait's equations give 

l /a d>\ 1 

Note that diffusion theory and P-1 give the same condition 
on the current; cf. Eqs. (5) and (3). Using Eq. (5), Eq. (6) 
becomes 

(5) 

(6) 

<t>(n) — <t>(r2) 

7T |^Sin ( j t ) ^ r2 \ ^ _ 

Equating Eqs. (7) and (4) and solving the resulting expres-
sion for the void diffusion coefficient gives 

D/n = 
In (r2/ri) 

2{1 - (2/tt) [sin'1 (n/r2) + (n/r2)V 1 - (n/r2)2]} ' 

Therefore, by using the above expression for the void 
diffusion coefficient in diffusion theory calculations the 
P-1 boundary conditions for an annular void region are 
preserved. Note that D is purely a function of geometry 
and hence group independent. For (ri/r2) « 1, Eq. (8) 
becomes 

In (r2/n) 
D / n = 

2[1 - (4/TT) (n/r2)] 
(9) 

:<Mn) + Di(dcf>/dr)i 

1 
= -<fi(rd + D< 

L m -
1 -

(10) 

(11) 

Following the same procedure as in the cylindrical case 
gives 

o _ 
(12) 

for the void diffusion coefficient. Again the above value of 
D in a diffusion theory calculation preserves the conditions 
expressed by Eqs. (10) and (11). 

As is well known, a void region in plane geometry can 
simply be neglected since the void does not contribute to 
the optical thickness. However, it is interesting to consider 

T A B L E I 

V A L U E S OF D/I\ 

riM 
D/n 

Cylinder Sphere 

0.99 4.2427 1.7811 
0.9 1.4089 0.60373 
0.8 1.0719 0.46296 
0.7 0.94799 0.41185 
0.6 0.89696 0.39063 
0.5 0.88637 0.38490 
0.4 0.90788 0.38967 

(7) 
the plane case in light of the above formulation. For the 
plane case, the equation corresponding to Eq. (4) is given 
by 

<t>(x 1) - <j>(x2) 
A / d A , 

- D 
x2). (13) 

To find the value of D for the plane case, we make the 
substitution r2 = (n + t) in Eq. (12) for t « n , r2 and 
consider ri —> 00 ; this gives 

(8) D = (ri3/2501/2, (14) 

and hence (D/ri) = fin (r2/ri) as (ri/r2) —> 0. Table I 
gives values of (D/ri) as a function of the ratio (ri/r2). 
It should be noted that the above treatment is also valid 
for 2a = 0. 

An analogous expression for the void diffusion coefficient 
for a spherical annular region can similarly be derived. 
Extending the material as given by Davison (2), the annular 
void boundary conditions for the spherical case are 

hardly a surprising result since as n —> 00 the spherical 
case approaches the plane case with a void region of thick-
ness t and hence the right hand side of Eq. (13) vanishes 
giving the expected result that <j>(x 1) = <£(z2). 

It should be emphasized that for the cylindrical and slab 
cases, the treatment is restricted to infinite cylinders and 
infinite planes; i.e., no end leakage. The end leakage is a 
separate problem. 
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On the Influence of Pressure on Boiling Water 

Reactor Dynamic Behavior at Atmospheric 

Pressure 
Due to the present importance of understanding reactor 

kinetics, it is essential to be as rigorous as possible in the 
mathematical modeling of reactor problems. Regrettably, 
such has not been the case in most analyses in this field. 
On the other hand very great care has been taken with the 
analysis of the hydrodynamic fields. Overwhelming mathe-
matical detail has been introduced, with the result that 
integration can be done only on a computer. However, the 
basic equation of reactor kinetics has been modeled in-
correctly. 




