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Letters to the Editors 

Group Averaging of Diffusion Coefficients* 
If one assumes the neutron flux in a reactor to be separable 

in space and energy, it is simple to show that in the context 
of the diffusion approximation the correct definition of a 
group averaged diffusion coefficient is given in terms of the 
transport mean free path, viz., 
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where the superscript goes over every element in the mix-
ture. In fact, Definition (2a) is commonly used (1). How-
ever it is quite simple to prove the following inequality: 

^ Str i ^ 2tr , (3) 

To prove inequality (3), we first show that S?r »/2 t r % ^ 1 
for a binary mixture whose transport mean free paths are 
Si and S2 . The extension to the general case is trivial, and 
will not be indicated here. 

The subscript i denotes the ith energy group; D is the diffu-
sion coefficient, Str the transport cross section, and Xtr the 
transport mean free path. Note that Str % ^ (Str)i-1 (Str» = 
iD7l) 

Equation (1) is inconvenient for practical application 
because mean free paths combine as the reciprocal of sums 
of reciprocals. This means that it is not possible to form a 
group cross-section library of average transport mean 
free paths for use in various calculations. Rather, each 
time a reactor's composition is changed the transport 
mean free path must be re-averaged.2 

While this difficulty is inherent, there are two alternate 
definitions of Di (or Str <) which can be combined in ele-
mental fashion and which provide upper and lower limits 
on the "correct," i.e., Eq. (1), definition of Str i . They are 
(for an V-component mixture) 

Stbr i/Ztr i = ((Si) + (S2)) 
1 

vSi + S2/ 
(4) 

However, by appealing to the Schwartz inequality (#), 
one can show that for sufficiently well behaved functions 
/ and <p, 
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which proves half of inequality (3). The other half may be 
proved by writing S*r % — S t r < = 8 and showing that 5 ^ 0 . 
The expression for 5 can be expressed as the ratio of two 
quantities, the denominator of which is always positive, 
and can thus be ignored. The numerator, 5', is given by: 

5' = < 
'Sj + S2 1 

Si S2 / \Si + s2 / X s , / \ s 2 
(6) 

* A complete description of this work was presented at 
the Seminar on the Physics of Fast and Intermediate Reac-
tors, sponsored by the International Atomic Energy Agency, 
Vienna, Austria, August 3-11, 1961, and will appear in the 
proceedings of that conference under the title "Group 
Cross Sections for Fast Reactors." 

1 Angular brackets will be used throughout to denote 
flux-weighted averages, i.e., 

which can be rewritten in the form: 

5' = ^ JJ dEdE'<p(E)<p(E')J + 1 

+ 
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where the integration is performed over the zth energy 
group. <p(E) represents the neutron flux. An unbracketed, 
subscripted quantity represents a "group constant". 

2 This problem has been discussed by Petrie, Storm, and 
Zweifel, Nuclear Sci. and Eng. 2, 728 (1957), in connection 
with averages in the thermal group. 

Si'S/ Si -f- S2 Si s2' s/s^ 

where S' means S (E'). After a little algebraic manipulation, 

3 The proof of Eq. (5) follows from the Schwartz in-
equality 

^Jffh dEj ^ j g2 dE jh2 dE 

which holds for functions h and g which are normed (i.e., 
the integrals of h2 and g2 must exist and be positive). 
Letting g = \/<p/f and h = \/<pf, Eq. (5) follows. The con-
dition that g and h be normed will clearly be met in any 
practical reactor core because fluxes and cross sections are 
positive, nonsingular functions of energy. 
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Eq. (7) becomes: 

8' = - ^ JJ dEdE'<p(E)<p(E') 

(8) 

(Z2 2/ ~ Si S2')2 ^̂  

^ZzZi'Sz'CSi + S2) (Si7 + S2O = 

This completes the proof of (3). 
Another useful result is that a limit can be placed upon 

the difference between the extremes of (3). Defining 
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we see that e can be written in the form: 
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from which it follows that: 

[<<ry><l/«ry> - l]min ^ 6 rg [<<ry><l/«ry> - l]m a x (10) 

where [• • -]min means that value of the bracketed quantity 
for that element in the mixture wrhich makes the quantity 
a minimum and [• • -Jmax has an analogous definition. 

An interesting application of these results involves the 
definition of 8D, the perturbation in the diffusion coefficient 
to be used in the calculation of a reactivity coefficient. We 
consider the unperturbed system to have a transport cross 
section S?r = a/E1/2, where a is a constant, and introduce 
a constant perturbation Str = 0.1 a. Calculating over an 
energy group, between limits of 1 and 2 Mev, and assuming 
for convenience a flux spectrum proportional to E~l, the 
following results are obtained: 

8D = -0.043 a~l 

8Da = -0.042 a~l 

8Db = -0.041 a - 1 

The quantity 8D was calculated exactly while 5Z)a and 
8Dh were obtained from (2a) and (2b) respectively. The 
expression for 8D, given in a report (unpublished) describ-
ing the AIM-6 Multigroup Diffusion Equation Code, 
8D = —DQ28(\/D) gives a result of 0.038 a~\ which is about 
12% too low. 
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Recursion Method for Calculating the 

Spatial Distribution of Resonance 

Absorptions 

Suppose that the angular and energy distribution of 
neutrons is known at the surface of a slab which has a 
single level Breit-Wigner resonance absorption cross section 
and a constant scattering cross section. We wish to calculate 
the spatial distribution of these neutrons absorbed in their 
first collision within the slab. 

Since the Breit-Wigner formula is symmetric about the 
resonance energy, only the symmetric part of the energy 
dependence of the surface flux will be relevant; let us assume 
that by some means this symmetric part has been expressed 
in powers of 

f(x) = (1 + (1) 

where x = 2 (E — E0)/T in terms of the resonance energy 
E0 and half width T (a formulation for calculating these 
components directly from the transport equation is cur-
rently being attempted). 

The angular dependence of each term can now be ex-
panded in powers of ju, the cosine of the angle between the 
direction of flight and the normal to the slab. For each 
resulting component of the vector flux, nl\pn, the absorption 
rate at a distance z within the slab is proportional to 

Ain(z) = 1 T dwl f00 dx[\p(x)]n+l 

r Jo J - x 
(2) 

•exp - - [So^Cr) + 2 j , 
M 

where Z0\p and 2S are the macroscopic absorption and 
scattering cross sections. Of most interest is Aoo , the ab-
sorption rate of a thin resonance when the surface flux is 
isotropic; this case has been treated asymptotically (1) 
for zero 2S . 

Rather than seeking closed form approximations, let us 
consider what would be practical for accurate numerical 
calculations. Since evaluating Ain(z) for all values of I, n, 
and z by any direct method certainly appears to be a 
prodigious task, it would seem worthwhile to search for 
simple relations between adjacent values: what is needed is 
a differential equation in the continuous variable z and 
recursion formulas in the discrete indices I and n. 

Thus, let us first consider Am . By letting t in Eq. (2) 
of ref. 2, p. 172 equal 2^—1, one finds that our integral 
over x equals irf (tp), where/(£) = a = 22 s /20 , 
t = 1/JJL, p = 20 2/2, a n d / 0 is a modified Bessel function 
(a relationship that has also been used by several authors 
previously). Changing the variable of integration from ju to 
t gives 

Aw(p) = r m ^ z . (3) 

* Consultant to APDA. Permanent address: University 
of Michigan, Ann Arbor, Michigan. Therefore, 




