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method results, as can be seen in Table II. Comparisons at 
other values of atomic number and at other energies in-
dicate that interpolated values of the parameters reproduce 
both dose rate and energy absorption build-up factors to 
within an average error of 5% and a maximum error of 20%. 

REFERENCES 
1. J. J. TAYLOR, Application of gamma-ray build-up data 

to shield design, WAPD-RM-217 (January, 1954). 
2. H . GOLDSTEIN AND J . E . WILKINS, JR . , C a l c u l a t i o n s of 

the penetration of gamma rays. NYO-3075 (June 30, 
1954). 

3. H. GOLDSTEIN, "Fundamental Aspects of Reactor Shield-
ing." Addison-Wesley, Reading, Massachusetts, 1959. 

G . L . STROBEL* 
Bettis Atomic Power Laboratoryf 
Pittsburgh, Pennsylvania 

Received July 19, 1961 

* Present address: Douglas Aircraft Company, Inc., 
Missiles and Space Systems, 3000 Ocean Park Boulevard, 
Santa Monica, California. 

t Operated for the U. S. Atomic Energy Commission by 
Westinghouse Electric Corporation. 

all be scaled up by a factor of 10, i.e., they should run from 
7.6-8.6, 1.8-2.3, and 3.0-5.5 respectively. Equation (40) 
should read: 

0 = ft - EZ(T)]/T 

1 - [1 J P U \ \ n ( n L \ T ) 

\ X/ ' gs(a = oo, L/X) 

It should be noted that the variational method of the 
first paper should give exactly correct results for the cases 
of coins with very large radii. On the other hand, for zero 
radii coins Eq. (30) is zero although this does not give the 
expected flux ratio of 1.0 when inserted in Eq. (40). Thus 
for zero or small radii the equation above breaks down. 
However, this failure is due to the fact that the self-shield-
ing factor [i — Ez (r)]/r is computed assuming that the 
foil radius a is much greater than its thickness t. One may 
avoid this difficulty by using the self-shielding factor com-
puted by Skyrme for the case a ^ t. In that case, one would 
employ the expression T{1 — r \A (g) — \ In <rr]) in place of 
fi — E3 (r)] in the equation above. A(g), according to 
Skyrme, is given by 

for Mg) = l+ 1/12x03 + 0(1/04) 
g = a J^ad » 1 

Re: "Thermal Neutron Flux Depression by Ab-
sorbing Foils" and "Flux Perturbations by 

Thermal Neutron Detectors" 
Having received a number of useful comments about 

these two papers (1,2), the authors would like to point out 
some corrections and limits of applicability of the two 
methods. 

In the first paper, (1) the last line of paragraph 6 on 
page 301 should read . . . "identical with the | term in Eq. (7) 
as long as g » 1." In Figs. 1, 2, and 3 the ordinates should 

1.0 

and 

A(g) = 1/Gr g) - i E,(2g) + } (1 - In 2) + 0(g) 

for g « 1. Since these equations for A(g) were derived 
assuming r « 1, such an approximation has not the do-
main of validity possessed by the corrected form of Eq. (40). 

The integral method of the second paper suffers from 
just the opposite difficulty. For very small radii coins the 
method works very well since integration over a very small 
volume of smooth functions proceeds with no difficulties. 
However, integration over large radii coins with a large 
number of radial points rapidly becomes very time-con-
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FIG. 1. The average normalized scalar flux in a coinshaped detector in water for various radii p and thicknesses 
as calculated by the variational and the integral methods. O variational method; integral method. 
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suming and expensive. Thus it is not practical to extend the 
integral method to coins of very large radii. 

The above comments should not be taken to indicate that 
there is little agreement between the two methods. Figure 1 
shows that there is a large area of agreement betwreen the 
two methods even when applied to detectors in water. 

It should be noted that for the data in Fig. 1 scatter 
was assumed isotropic (i.e. jl = 0) since most of the integral 
calculations were carried out on this basis. Calculations for 
a gold coin (of 5 mils thickness and 0.5 cm radius) in water 
to investigate the effect of anistropy of scatter in water 
have been made using both methods. The results are as 
follows: 

Average Scalar Flux in the Detector 

0M> 
0/00 

(variational) 
(integral) 

0.0 

0.773 ± .005 
0.813 ± .002 

In view of the uncertainty in reading the graphs for use 
in the variational method and finiteness of the numerical 
integrations of the integral method, the agreement as to 
the sign and magnitude of the effect of anistropy is quite 
encouraging. It is, however, unfortunate that the compari-
son was made in a region of small radii coins where the two 
methods do not agree too well in absolute magnitude. 

Finally it should be emphasized that all the dimension-
less plots in the second paper, i.e., Figs. 7-10 and 13-18, 
are not rigorously correct. They result from a compromise 
of about one percent between the dimensionless plots for 
gold and indium. Further investigation showed that the 
same dimensionless plots could be used for detector ab-
sorption cross section between 1.0 and 10.0 if one requires 
no more than plus or minus two or three percent accur-
acy. If, however, (1) high accuracy is required, (2) de-
tector absorption is not considerably greater than its scat-
ter, (3) scatter in the external medium is not isotropic, 
and (4) the detector is not in the size range covered, 
then one should return to the computer and calculate 
the particular cases of interest. 
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The Milne Problem with a Polynomial Source 
The Milne problem with a source of the form xn has been 

treated by a number of authors. Lundquist and Horak have 
expressed the emergent flux in terms of a recursion relation 
(1). Ueno has used the probabilistic approach to obtain the 
emergent flux in closed form (2). Busbridge has derived both 
the emergent flux and the angle integrated flux in the in-
terior (3). The latter is obtained from an iteration procedure 
which is shown to converge to the correct solution. The pur-
pose of this note is to derive closed expressions for the emer-
gent angular distribution and the total flux by using a 
method described in ref. 4-

In plane geometry the energy independent transport 
equation for isotropic scattering in the laboratory system is 

dx 
f1 1 

= du' + — Q(x), OigcoCL, (1) 

0.3 
0.803 =fc .005 
0.831 db .002 

where co = S8/S, /z is the direction cosine with the positive 
x-axis, and Q(x) is a volume source, x is measured in terms 
of the total mean free path. For a source of the form Q{x) = 
exp sx the angular distribution ^(0, — /JL), (0 ^ ju ^ 1), of 
neutrons emerging from the surface x = 0 of a semi-infinite 
slab can be shown to equal (2, 4) 

*(0, - m) = ( l /22 ) t f ( - l / S ) t f ( M ) ( l - MS)"1, M = 0> (2) 

where Hip) satisfies the integral equation 

H(n) = 1 + J W [ H(fx') (M + At')"1 0 ^ M ^ 1. (3) 
Jo 

The H-functions have been discussed extensively (3, 5, 
6). They are tabulated in the range 0 < w ^ 1 for small in-
crements of n (5, 7). Their moments, defined as 

hn = [ jj.nH(fi) du, (4) 

are tabulated for 0 ^ n ^ 20 (7). 
Expressing the source in terms of its Laplace transform, 

Q(X) = — / Q(S)6~ ds , 
Jy-ioo 

(5) 

one finds for the angular distribution, according to Eq. (2), 

zzi Liti J 7 _ . O O 

• (1 - jus)-1 ds, /x ^ 0. (6) 

i i n + i c o _ / i \ 

where the contour must correspond to that of Eq. (5). 
Equation (6) is quite general and can be applied to an 

arbitrary source Q(x). Its use will be illustrated by apply-
ing it to a source of the form Q(x) = Qxn. Inserting the 
Laplace transform of the source into Eq. (6) gives, 

nlQ . 7 +zoo # ( _ 1 / s ) i — fJ.) ~ — H(tx) / ; 
* ' ' 22 W 2« J7_fa0 8«+i( 1 - ĝ) ds. (7) 

If the contour is closed by an arc of radius R in the left-hand 
plane, the contribution of the integral along the arc will 
vanish as R—> co. H( — l/s) and 1/(1 — fts) are regular in the 
left-hand plane, so that the only singularities enclosed by 
the contour are at s = 0, where the integrand has a pole of 




