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zero power transfer function 

jSi = fraction of neutrons that are delayed in 
ith group 

\ = decay constant for ith group 
Ke* = ineffective — 1 excess reactivity 
I = effective prompt neutron lifetime 
w = frequency (rad/sec) 
Re[ZP(ja>)\ = real part of ZP(jco) 
A quantity of interest is the amount of Kex necessary 

to generate a given ratio of second order harmonic to funda-
mental | X2/X1 | . Equation (1) represents a quadratic 
vector equation in Kex/2 which leads for a given ratio of 
"a" to two solutions. Only one solution is applicable. 
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where: 

m = a W + /V) 
6 = 2 /3 x a 2 - ( « x 2 + ay2) 

c = a2 

ol = ZP(jco) = otx + jay 
0 = ZP(2jco)ZP(jco) - 2ZP(jco) Re [ZP(jco)] = (3X + j(3y 

The second solution has to be discarded because it leads to 
values of 2£ex near prompt critical for which the assump-
tions made in the original derivation become invalid. 

Similar to Eq. (1), we form the ratio " a " of second order 
harmonic and the fundamental for a reactor at power. 

X2 
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LP(2jco)[l + nQPK(jco)LP(jco)}Kex/2 

1 + 
LP(2jco)LP(jco) + LP(2jco)n,PK(jco)[LP(jco)}2 

+ mPK * (jco) LP* (jco) LP (2jco) 
• {LP(jco) + noPK(jco)\LP(jco)}2\ 

- 2 LP(jco) Re [LP (jco) + noPK(joo) | LP(jco) K 
(KeJ 2)2 

(3) 
where: 

P = power level in Mw 
K(jco) — (Vk/k)/Mw power coefficient 
no = steady state flux (Since we are interested in 

reactivity changes with respect to the steady 
state flux no , we are free to set no = 1.) 

LP (jo>) = ZP(jm) 
1 - ZP(ju)PK(ja) 

hn 
n0 j 

Ke ( 4 ) 

Equation (4) follows from the following symbolism as-
suming linearity (2). 

8k (jco) = Kex(jco) + noPK(ju) dn(jco) 
no (5 ) 

The second term in Eq. (5) assumes that changes in reac-
tivity are linear functions of the power variation. We have 
written both the zero power transfer function ZP(jio) and 

* indicates conjugate complex function. 

6n ( Jw ) 

FIG. 1. Feedback system 

the resulting incremental reactivity in the frequency do-
main and we can represent ZP(jco) and Eq. (5) symbolically 
in a feedback system shown in Fig. 1 (5). In this symbolic 
notation the feedback is positive. This is done in order to 
retain the physical meaning of the sign of the power coeffi-
cient. 

In an analog manner, as for the zero power case, we can 
solve for Kex necessary to obtain a given ratio a = | X2/X1 | 
for a reactor under power. 

For the terms in Eq. (2) we get (and again the second 
solution has to be discarded): 

m = a2(\x2 + Xy2) 
b = 2a2\x - (dx2 + V) 
c = a2 

5 = LP (2jco)[l + noPK (jco) LP (jco) ] 
X = LP (2jco)LP(jco) + LP (2jco)noPK (jco) [LP (jco) ]2 

+ noPK* (jco)LP* (jco)LP (2jco) 
{LP (jco) + noPK (jco) [LP (jco) ]2} 
- 2LP(jco) Re [LP(jco) + n0PK(jco)\ LP(jco)\2] 
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Simplified Calculation on Thermal Transient 
of a U0 2 Fuel Rod 

The thermal behavior of a cylindrical UO2 fuel rod is 
characterized by many parameters, namely, a high thermal 
resistance and a relatively small capacitance of the ceramic 
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FIG. 1. Equivalent circuit of fuel rod 

Lumped parameter 
solution 

capacitances in the U02 fuel rod, the lumped parameter 
technique gives a fairly accurate solution in comparing 
with other exact methods. In ref. 1, the maximum deviation 
in heat transfer rate was evaluated as less than 10%. In 
ref. 2, the maximum clad temperature obtained by present 
technique agreed with the solution from a Finite Integral 
Transform within 8% and the value from lumped parameter 
is higher than the exact solution. This indicates that the 
simplified solution is conservative. Both solutions are shown 
in Fig. 2. The solution from one-lumped capacitance in the 
pellet was also compared with that of an analog computer 
using the seven lumped capacitance model by Cunningham 
(3). He found that the maximum clad temperatures after a 
scram following a total loss of power to the pumps evalu-
ated by both methods, agreed within 2%. These results of 
comparison indicate that a lumped parameter technique is 
adequate in calculating the thermal transient of a U02 
fuel rod for engineering purposes. 

The rate equations for the heat transfer of a UO2 fuel 
rod (Fig. 1) can be written as: 

Qn c d T 1 , -ldt Ri 
T2 

T\ - T2 = c dT, T2 - Tc 

RI dt R2 

(i) 

(2) 

where 

2 3 4 
Nondimensional time 

FIG. 2. Comparison of solutions (2) 

U02 pellet, a low resistance and a nonnegligible capacitance 
of the metallic clad, and a contact resistance between the 
clad and pellet. In analyzing its thermal transient, a Hankel 
Transform (1) or a Finite Integral Transform (2) may be 
used. However, in both cases, the exact solutions are in the 
forms of infinite series, and it is almost impossible to make 
a quick evaluation by hand calculation. Hence, a lumped 
parameter technique was introduced for simplifying the 

= nuclear heating, Btu/sec-ft (of fuel rod) 
12 — heat transfer to coolant, Btu/sec-ft 

q*' = (T2 - Tc)/R2 

C1 = capacitance of pellet, Btu/°F ft, Ci = irr^cipi 
C2 = capacitance of clad, Btu/°F ft, C2 = 2IRR2KRC2PI 

= resistance of U02 and gap, sec ft °F/Btu 
RI = (1/871-/; 1) + (1/2TT NHG) 
ki is UO2 thermal conductivity, hs is contact 

conductance, 
resistance of coolant film, sec ft °F/Btu 

R2 = (1/2x7*2 ̂ 2) 
average pellet temperature, °F 
average clad temperature, °F 
bulk coolant temperature, °F 

9n 

Ri 

Ro = 

Ti = 
T2 = 
Tc = 

After a pipe rupture, the system pressure drops with the 
time and so does the saturation temperature of the coolant. 
Hence Tc = Te(t), The time, t, is counted from the instant 
of rupture. By taking Laplace transformation of Eqs. (1) 
and (2), we get: 

= 
R2 qn'is) + (Ci RI s + 1 )Tc(s) + R2 CI TM + R2 C2(RI CIS + 1)^(0) 

Us) = 

Ri R2 Ci C2 s2 + (Ri Ci + R2C2 + R2 CI) S + 1 
(R2 C2 S + 1 + R*/Ri)Ri gn'(s) + Tc(s) + (Ri c2 s + 1 + Ri/Ri)Ri Ci TM + R2 C2 T2(0) 

Ri Ri Ci C2 s2 + (Ri Ci + R2C2 + R2 Ci)s + 1 

(3) 

(4) 

calculation in which the thermal resistances and capaci-
tances of the pellet and the clad are evaluated at their 
average conditions in time and space. Each quantity is 
lumped at the middle of its physical geometry and axial 
heat conduction is neglected. The equivalent thermal 
circuit is shown in Fig. 1. 

Due to the way of distribution of the resistances and 

where qn'(s) is Lqnr (t) and qa'(t) is the decay heat. For a 
pressurized water reactor operated for a long time, the 
decay heat equation can be written approximately as: 
qn{t)/qn'(0) = 0.056e-°-004' + 0.20e~°-u, for t ^ 60 sec 
and 
?n'(0/?n'(0) = 0.031 + 0.025e-° 009<, for 60 < 350 sec 
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By knowing the coolant temperature, Tc = Tc(t), the his-
tories of pellet temperature and clad temperature are 
readily computable from the inverse transformation of 
Eqs. (3) and (4). 

In a loss-of-flow accident, a sudden decrease of the rod 
surface heat transfer coefficient due to the occurrence of 
film boiling after DNB will cause a temperature rise in the 
clad even though the reactor is scrammed. The magnitude 
of this temperature rise affects the strength of clad and 
thus determines the integrity of the fuel rod. 

Two simplifications can be made in analysis of this acci-
dent. Firstly, when the pumps lose power, the system 
pressure does not change significantly and the coolant 
temperature, Tc , remains approximately constant. Sec-
ondly, the maximum clad temperature usually occurs 
within 10 sec from the instant of loss power to the pumps. 
Hence, the decay heat can be assumed to be constant in this 
short time period, i.e., gn'(t) = 0.22 gn '(0). Then Eqs. (1) 
and (2) can be combined as: 

qn' = CiCzRih' + (Ci + C2 + CiR\/R2)q2 + q-i (5) 

where 

q*' = (T2 - Tc)/R2 

The boundary conditions of the above equation are: 

For ^ 0: qn' = gn ' (0), R2 = R«,o 

For 0 < f g ti : qnf = ^ ' ( 0 ) , Ri = R^.tb 

For t^t i : qn = 0.22 gn '(0), R2 = #2,fb 

where 

= ^scram foNB , 

all times measured from loss of power to pumps. In order 
to facilitate a parameter study of the fuel rod transient 
behavior, these parameters were grouped by Hunin and 
Tong (4). They rearranged Eq. (5) and its boundary con-
ditions into the following equation: 

(01 -02 ) CF2.„ tc) 
<Zn'(0) (6) 

+ 0.22̂ 2,f 
where 

7 = 
L foAc\ R2, fb/J 

z = [ J ca.0 - A.ft) - rV f 1 -
L/32 foAc\ R'2,(b J I 

+ R2,fb(l - 0.22) 

\ "Un 

+ - ^2,fL(l - 0.22) ft 

= U/n-

where n is pellet radius 

01 = Ti2ai , fo = ri*a2 

Ac = Co/rS 
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FIG. 3. Thermal transient parameters of a fuel rod 

«i and a.1 are the two roots of the homogeneous form of 
Eq. (5) as 

CiCafiia2 + (Ci + C2 + CiRi/R^a + 1/R2 = 0 
It can be seen from Eq. (6) that the maximum clad tem-
perature (T2,max) is a function of n and R2 providing the 
physical properties of the pellet and clad and the steady 
state power level (qaf (0)) are known. Now we can plot the 
working curves to evaluate the influences of the thermal 
output of fuel rod, the pellet and rod sizes, the time inter-
val between DNB and effective scram, and the film boiling 
heat transfer coefficient on the maximum transient clad 
temperature in a loss-of-flow accident. In preparing the 
working curves as shown in Fig. 3, the following physical 
parameters are assumed: 

ci of fuel = 0.08 Btu/lb °F 
pi of fuel = 635 lb/ft3 

C2 of clad = 0.16 Btu/lb °F 
P2 of clad = 474 lb/ft3 

ki = fuel thermal conductivity = 1.15 Btu/hr-ft °F 
hs = gap conductivity = 1000 Btu/hr-ft2 °F 
h2.0 = steady state heat transfer coefficient = 5000 

Btu/hr-ft2 °F 
h2,fi = heat transfer coefficient in film boiling = 100 

Btu/hr-ft2 °F 
Ar = clad thickness = 0.087ri 
Thermal resistance of clad was neglected. 

REFERENCES 

1. F. E. TIPPETS, An analysis of the transient conduction 
of heat in long solid cylindrical fuel elements for nu-
clear reactors. HW-41896 (1956). 

2. L. A. MATSCH, Transient one dimensional temperature 
distribution in a two region infinite circular cylinder 
with thermal resistance at the two region interface, 



LETTERS TO THE EDITORS 343 

time dependent heat generation rate in the inner 
region, and step change in outer surface convective 
heat transfer coefficient. M. S. Thesis, University of 
Pittsburgh (1960). 

3. J. P . CUNNINGHAM, personal c o m m u n i c a t i o n (1960). 
4. C. M . HUNIN AND L. S. TONG, Parameter studies on 

thermal transient of a fuel rod. Presented at ANS 
Sixth Annual Meeting, Chicago (1960). Also WCAP-
1234, same subject (1959). 

L . S . TONG 
Atomic Power Department 
Westinghouse Electric Corporation 
P. 0. Box 355 
Pittsburgh 30, Pennsylvania 

Received August 10, 1961 

A Differential Equation for Calculating 
Doppler Broadened Resonances 

A Doppler-broadened Breit-Wigner resonance is com-
monly approximated (1) as the unbroadened value at the 
resonance energy multiplied by 

tf (A x) 
1 r exp -[(x - y)/p¥ 

1 + y2 
dy, (1) 

where 

P = W^VEnkT/A and 2(E - Eb)/T. (2) 

ER and r are the resonance energy and half-width; E is the 
laboratory-system energy of the incident neutron; JCT is 
the energy of thermal motion of the absorber, and A is its 
mass number. 

For the calculation of resonance integrals or detailed 
neutron flux, 4> (P,x) is required for many values of x but 
only one value of p for each resonance. Thus while the well-
known formula, 

3V . / N 1 
= Wlth ^ 0, x) = , 

dx2 P dp r ' 1 
(3) 

provides an alternative to numerically integrating the 
expression in Eq. (1), it suffers from the fact that 
can be obtained for a given p only after the complete x-
dependence has been determined for all smaller values. 
Therefore, for most programs requiring values of without 
recourse to tables, it would be very desirable to have a 
differential equation for each resonance only in the variable 
x, with the parameter (3 held constant. Such an equation 
would enable one to calculate entirely from those adjacent 
values that are needed anyway. 

One can verify, after considerable manipulation, that 
\J/ (p,x) in Eq. (1) satisfies the simple linear second order 
differential equation, 

i p* r + P2x </>'+(1 + %P2 + x2) * = 1, (4) 
where the primes denote total derivatives with respect to 
x. To make the definition complete, there are the boundary 
conditions, 

\K/3,0) = ( v V 0 ) exp(r 2 ) [1 - erfOT1)] 
and (0,0) = 0 (5) 

for starting at the resonance energy, and \p(p,x) o^ (1 + z2) - 1 

or other asymptotic expressions for starting at energies far 
from ER. The present author and K. W. Morton at Harwell 
have both derived Eqs. (4) and (5) independently a few 
years ago as incidental subjects in larger technical reports. 
These formulas have been found very useful in a variety of 
codes using several of the usual numerical methods for solv-
ing second order differential equations. 

If \p(p,x) is desired for a range of values of (3 as well as x, 
substituting the left side of Eq. (3) for in Eq. (4) will 
result in a more useful expression than Eq. (3) alone, since 
no derivatives higher than the first appear. By differentiat-
ing Eq. (4) twice with respect to x, eliminating the third 
derivative terms between the third and fourth order differ-
ential equations, and substituting the first derivative term 
of the resulting expression into Eq. (4), one can obtain a 
fourth order differential equation in x with only even de-
rivatives present. Eq. (3) can then be applied to get a second 
order total differential equation only in the variable 13 (3). 
Sometimes the quantity 

<P(P, x) 
1 r y exp -[(x - y)/(3]'2 

l + y2 
dy, (6) 

is desired to account for Doppler broadening the inter-
ference term in resonance scattering. This quantity can 
be evaluated conveniently in conjunction with Eq. (4) by 
means of the expression (2), 

2 dx (7) 

It would seem that the mesh spacing in x should be small 
compared to (3 in forward or central difference schemes for 
solving Eq. (4), since both derivative terms vanish with 
p. The danger of an indeterminancy would be absent if Eq. 
(4) were applied at one mesh point with its derivatives 
calculated from previous mesh points. 
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Crystal Spectrometer Measurement of the 
MITR Thermal Neutron Spectrum* 

A neutron spectrum in the wavelength range 4 A>\>0.65 
A (0.005 ev<jE/<0.2 ev) has been measured using a crystal 
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