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has been adopted. The theoretical curves are calculated 
from Eq. (9), with the only requirement that the theoretical 
curve (rod diameter 8 mm) should agree with the experi-
mental value for the point r = 0. 

One further point of evidence comes from a comparison 
with Monte-Carlo calculations made by Morton (2), Fig. 3. 
In this case the analytic curve, without volume contribu-
tion, is shown. The Monte-Carlo results are derived under 
more realistic premises: Doppler-broadening of resonances, 
inclusion of resonance scattering, higher order collisions 
with energy degradation. The results, nevertheless, show 
the same trend as the "exact" distribution. 

In the immediate vicinity of the surface the radial func-
tion no longer is independent from resonance parameters. 
For cylindrical rods one obtains 

A(x) + <>» V2o R 

dt 
m ) = h m ) P (16) 
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A Note on the Perturbation Method in Neutron 
Transport Theory 

In this note the perturbation formula of neutron trans-
port theory (1-8) is derived by the method of ordinary 
perturbation theory used in quantum mechanics. Using the 
standard methods, formulas for higher order perturbations 
may be written down immediately. 

As is well known the Boltzmann equation 

ft grad \p(y, r) + a(v, r)^(v, r) = q(v, r) 

' q(y ,r) =Jf3(v,v'; r)^(v'; r) d3v' (1) 

can be converted into an integral equation 

xp(v, r) = JK<a)(y; r, r')q(v, r') dV 

yq(v, r) = J/3(v, v'; r)^(v', r) dV 

which in turn can be expressed in operator form 

xP = K{a)q yq = (3^ 

or y\p = Kj3xp 

(2) 

(3) 

in which x = R — r is of the order 1/So and F2(£) is defined 
by 

xp being the directional flux, q the emission density, a the 
total cross section, 0(v, v'; r) the "transfer cross section" 
of neutrons of velocity v into a velocity v' lying in the ele-
ment dsv of velocity space. The eigenvalue y which is 
the multiplication in one "scattering generation" is intro-
duced instead of the reactivity. The kernels K(a) and 0 
possess the following symmetry properties: 

2£>>(v; r, r') = #<«>(-v; r', r) 

0(v, v'; r) = /3(—v, - v ' , r) 
(4 ) 

Manner and Springer (5) recently investigated the activa-
tion of plane resonance foils with similar methods and 
showed good correspondence with experimental results. 
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In order to prove the perturbation formula we further 
transform the Boltzmann equation into a new form. De-
fining 

0«»(v, v'; r) = (l/7)/3(v, V; r) - «(v, r) 8VV, (5) 

the Boltzmann Eq. (1) becomes 

a grad xp(v, r) = q^(v, r) 
(6) 

qHv, r) = J jS(0)(v, v'; r) d?v' 

which, in turn, can be written in operator form 

xp = if(0)g(0) qi 0) = 0(0)^ (7) 

or 
^ = a nd qw = ^(o)Kwqw 

We generalize these equations by introducing an eigen-
value e, 

and 

fiWKWq™ = eq(€0) 

(8 ) 

The physical solution for the flux 1p corresponds to the 
eigenvalue e = 1, all other solutions correspond to eigen-
values smaller than one. Two further equations with the 
same eigenvalues are formed with the transposed operators. 
Considering the symmetries (4), it is readily seen that the 
transposed of the equation for the emission density q(e0) is 
equivalent to the Boltzmann equation (1) with /3 replaced 
by (l/e)/3, a by (1 /e)a and all the velocities reverted, i.e., 
the adjoint Boltzmann equation. The solutions xpe+(—v, r) 
of the adjoint Boltzmann equation being eigenvectors of 
(0(o)/£(o)) a r e orthogonal to the eigenvectors q(e0) of (fiK) 
belonging to different eigenvalues. This last fact can now 
be used to formulate perturbation theory in a straight-
forward manner. 

Kw is the matrix K{a) for a = 0 and is completely inde-
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pendent of the material properties of the system. Any 
perturbation in the material properties a, (3 and the multi-
plication factor 7 is expressed as a variation of /3(0). The 
usual first-order perturbation formula is 

yields the relation 

8e = (9) 

// \p+{—v, r)<p(+v, r) d?v db 

in the physical case e = 1, and therefore we equate 8e to 
zero. Using (7) and (5), the above expression for 8e may be 
rewritten as follows 

5e = 0 = J J J r)(5/3(0)(v, v'; r))^(v', r) db db' db 

= JJJ r)5(j8(v,v'; r)/7ty(v',r) db, db' db (10) 

- J J r ) 5 a ( v , r) d»r 

In general the variation da consists of a variation 52 of the 
cross sections and a variation 8X/v of the fictitious absorp-
tion cross section \/v due to a time variation exp \t of the 
system (4) • 

In the same way any number of terms in the perturba-
tion series for e(= 1) may be written down immediately and 
equated to zero. Thereby we get relations between the 
changes in a, 13 and y. For example the second-order per-
turbation formula 

8e = fa+spMKWq^) 

e^l 

The scalar product (\p+-<p) of with a vector <p(v, r) is 
defined as 

where 

<€' I 8a I e") = JJ i/v(-v, r)\pe»(v, r)8a-db db 

| - | e"\ = - JJ </v(-v, r)qe»(v, r)db db 

(12) 

1 - € 

(13) 

/e' | - | e"\ = - JJJ i r ) « j 8 ( v , v'; r)W'(v', r) d3v db' db 
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Errata 
Volume 7, Number 3, March 1960, in the article by Morton R. Fleishman and Harry Soodak'entitled 

"Methods and Cross Sections for Calculating the Fast Effect," pp. 217-227: 

Page 224, Table II change: 

<j\t for U238 from 4.52 to 4.541 
cr\c for U238 from 0.054 to 0.032 
o-n for U0 2 from 7.77 to 7.796 
aic for UO2 from 0.099 to 0.077 




