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L E T T E R S TO THE E D I T O R 

Milne's Problem for a Velocity-Dependent 
Mean Free Path* 

Most of the rigorous results in neutron transport theory 
have been obtained in the constant cross-section approxi-
mation (1). These results are usually assumed to apply to 
thermal neutrons if an appropriate average of the cross 
section over a Maxwellian velocity distribution is taken. 
The author has recently considered the problem of the 
decay of a fully thermalized pulse of initially fast neutrons 
(2), paying particular attention to a rigorous treatment of 
the neutron energy spectrum. In that work the most im-
portant question remaining unresolved was the appropriate 
treatment of the spatial boundary conditions in the case 
that the mean free path varies with neutron energy. This 
question can be of some practical importance in determin-
ing the geometric buckling for hydrogenous moderators, 
where the thermal neutron cross section is strongly energy 
dependent. 

In the present note we consider the problem of the 
extrapolation distance for an energy-dependent mean free 
path. We consider the idealized situation of an infinite 
half-space with no absorption or sources and isotropic 
scattering. The energy transfer between neutrons and 
moderator is explicitly included. This problem has been 
solved exactly in the constant cross section approximation 
(3). There is also available a variational solution for con-
stant cross section which gives the extrapolation distance 
very accurately using the solution far from the boundary 
as a trial function (4). In the following, we present an exten-
sion of this variational solution to the multivelocity prob-
lem appropriate for varying mean free path. 

We consider the flux/(2, E, n) as a function of position z, 
kinetic energy E, and direction /z = c o s ~ l ( ^ ) - The half-
space for z > 0 contains moderating material with an 
isotropic energy transfer cross seciton X(E —> E'), and a 
mean free path 1(E) determined by 

dE ' = i k 

The appropriate form of the transport equation for this 
problem is 

4 + l k f = 2 f d E ' C ^ - W * . * , * (1) 
subject to the boundary condition 

/ (0 , E ,n ) = 0 for n > 0 

We will frequently make use of the fact that the energy 
transfer cross section obeys the detailed balance condition 

* Work supported by the U. S. Atomic Energy Commis-
sion under contract # AT (04-3)-167. 

(*) 
X(E' E)M(E') = E')M{E) 

where 

M(E) = E/ (kT)2 exp ( - E / k T ) 

is the Maxwellian flux distribution at the moderator tem-
perature T. 

In the special case that the mean free path is constant, 
the neutron spectrum will be Maxwellian throughout the 
moderating material. This can be verified by substituting a 
solution of the form <j>(z, n)M(E) into the transport equa-
tion and using the detailed balance condition. The function 
<t>(z, jti) satisfies the one-velocity transport equation 

dcf> 1 I f 1 
V ~ + 7 <f> = ~ / <V<M,z m') 

dz I 21 

with the boundary condition 

0(0, fji) = 0 for m > 0 

If 1(E) is not constant, the spatial and energy dependence 
of f(z, E, p) are not separable, and the problem becomes 
considerably more complicated. The variational solution, 
introduced by LeCaine for the one-velocity problem, 
however, can be generalized to the multivelocity problem 
defined by Eq. (1). 

The total flux 

/„(*, E) = J drf(z, E, fi) 

satisfies the integral equation1 

'0(2, M j f dE'E, X(E'->E)Mz>, E>) 

Far from the boundary fQ(z, E) will have the asymptotic 
form (z + zq)M(E). The quantity z0 is the extrapolation 
distance that we wish to calculate. In order to obtain a 
variational expression for z0, we first need to derive some 
auxiliary relations. The derivations are in a straight-
forward analogy with the one-velocity problem and will 
not be reproduced here. A more detailed discussion is given 
in the informal report, GAMD-944, which is available on 
request from the author. 

We introduce the function 

q(z, E) = fo(zf E) - z M(E) 

which satisfies the integral equation (6) 

1 The functions En(x) are the same as in references 1, 3, 
and 4. 

552 



LETTERS TO THE EDITORS 553 

q(z, E) = -l(E)M(E)Ez ( — 
( i ( E ) ) 

+ \ l dz ' l d E ' E l (^ "m ^) 

(2) 

z0 : 

where 

moo 

dE dE' dzl(E)E31 _ . „ 

I = J l(E)M(E) dE 

i n ? + i f i 
2Z [_4 2 J 

and 

/ HE)M(E) dE 

where 

12= [ [ [ dE dE' dzq(z} E)X(Er-^E)[M(E)]~ 
Jo Jo Jo 

ZP 1 
(5) 

case of constant cross section CO.] The relation between 
extrapolation distance and diffusion coefficient for a \/v 
cross section, as obtained from (5), is 

In terms of q(z, E) the extrapolation distance is given by 

f 8 /32\~| 
[_17 + 17 

>E)q{z,E') (3) 

By use of the integral equation (2) satisfied by q(z, E), 
and the detailed balance condition, it can be shown that a 
stationary expression for Ii is given by 

(4) 

2(E" 

and 7i is the integral given in (3) with qiz, E) replaced by 
the trial function q{z, E). If q(z, E) is chosen as the solution 
of (2), the expression (4) for h will be maximized. 

The simplest trial function is the asymptotic solution 
q(z, E) = CM(E). The integrals for this trial function are 
the same that occur in the one-velocity problem and give 

*o= 2.13Z)| - + -

The extrapolation distance for water is, therefore, approxi-
mately 7% greater than would be obtained from the diffu-
sion coefficient and the assumption of % constant cross 
section. 

There is, however, a great deal of the physics of the 
problem omitted by the use of the asymptotic solution as 
trial function. No account is taken of the departure from an 
equilibrium velocity distribution near the boundary. This 
departure is caused by the preferential leakage of neutrons 
of longer mean free path, and depends on the ability of 
collisions with the moderator to restore equilibrium. These 
effects can be considered, in principle, by using a trial 
function which goes to the correct asymptotic form at large 
distances but includes a non-Maxwellian transient near the 
boundary. At this point the analogy with the constant 
cross section case breaks down, and the evaluation of the 
integrals becomes extremely complicated. Since the results 
to date were felt to be of sufficient interest to be put on 
record, this letter has been written. 
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For constant mean free path this reduces to 0.7083 I, which 
is only 0.3% smaller than the exact value. The prescription 
given by (5) is, therefore, likely to be quite good if the 
variation of the mean free path over the thermal energy 
region is not too great. 

It is of some interest to compare the extrapolation dis-
tance and the thermal diffusion coefficient in a purely ther-
mal neutron spectrum. For isotropic scattering the thermal 
diffusion coefficient is given by D = ~l/3. For constant mean 
free path, we therefore have z0 = 2.13D. As an example of a 
varying mean free path we consider the case of water where 
the transport cross section varies approximately as 1/v (9). 
We will assume that the isotropic scattering results can 
be carried over by replacing 1(E) by the transport mean 
free path. [This is known to be accurate for the diffusion 
coefficient (2), and for the extrapolation distance in the 

Volcanic Energy Resources 

One of the possibilities for long term world energy 
production is the earth's internal heat. Relatively little is 
known of its total reserves, or even what fraction is being 
replenished by radioactivity. An estimate can be made, 
however, of the average amount of energy being wasted 
annually through the high-temperature process of lava 
emission. This may be only a small fraction of the total 
energy production. A value of 0.8 km3 of lava per year 
(Sapper 1927) is still considered (1) the best estimate, based 
on production since 1500 A.D. Taking an estimate of 2000°F 
at emission, a density of 3, and an average atomic weight of 


