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shape during a transient. We would like to add a few com-
ments to this discussion. In general, the transient flux shape 
is not significantly affected by delayed neutrons if the 
reactor is small. However, in a reactor which has a dimen-
sion twenty times the migration length or more, delayed 
neutron effects on the transient flux shape begin to be 
significant. Such dimensions are not unheard of, and in 
particular, cores of roughly annular geometry such as 
PWR may have such dimensions around the circumference. 

When an asymmetric instantaneous change in material 
properties is made, the flux shape changes part way toward 
its asymptotic form in a few prompt neutron lifetimes, 
but the remaining change takes place in times character-
istics of the delay precursors. In this respect, the behavior 
of the shape is reminiscent of the behavior displayed by 
the fundamental mode when reactivity is inserted; that is, 
the reactor first experiences a prompt step change in power 
level, followed by a slower variation governed by the 
delayed neutrons. The influence of the delayed neutrons 
on the transient power shape depends upon how large a 
part of the flux tilt takes place promptly. 

This effect may be seen most easily in a simple model, 
an initially uniform bare core with one energy group and 
one group of delayed precursors. At time zero, let a non-
uniform perturbation, SZa(r), be made in the absorption 
cross section in such a way that the reactor remains criti-
cal. After this perturbation, the governing equations are 
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and the subscript zero indicates unperturbed quantities. 
We may examine the transient behavior of the flux shape 

by a first-order perturbation theory and a modal expansion. 
If this is done, the equations governing the expansion 
coefficients are 
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where ak is the coefficient of the ftth mode in the expansion 
of the flux perturbation, and Ck is the coefficient of the 
&th mode in the expansion of the precursor density per-
turbation. a0 and c0 vanish, since we have chosen the dis-
turbance such that the reactor remains critical. 

These equations may be readily solved. Figure 1 shows 
the time dependence of a typical coefficient, ak , for various 
values of the parameter ABg

2 = B2
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g0 . These curves 
show that the time dependence of the flux shape consists 
of a "prompt" jump plus a slow approach to the asymptote 
with time constant the order of a delayed neutron lifetime. 
As the buckling difference becomes smaller, the "prompt" 
jump becomes a smaller part of the whole. 
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FIG. 1. Time behavior of expansion coefficient. 

Solving Eqs. (4) and (5) analytically, one may find that 
the fractional height of the initial jump is 

qfc(0 + 6) ^ 1 
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For a one-dimensional reactor of length L, AB2
gk = k(k + 2) 

(TVL*)^ 
Equation (6) shows that for small graphite-moderated 

cores of the type examined in reference 2, in which both 
M2 and ABg

2 are large, no substantial effect on the shape 
is produced by the delayed neutrons. However, for hydro-
gen-moderated cores with at least one large dimension, the 
effect of delayed neutrons may be quite significant. For 
example, if the migration area is about 100 cm2, the core 
length is 500 cm, and kw ~ 1; then 

Q3kJM*ABh) « 0.63, 
and in this case, only about two-thirds of the asymptotic 
first-harmonic component manifests itself during the 
prompt jump. 
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Analysis o f Neut ron Flux D a t a f o r Accura te 
Determina t ion o f R e l a x a t i o n Length* 

Experiments with exponential piles usually require the 
measurement of a relaxation length to obtain the essential 
information about moderators, fuels, or lattices. The relaxa-

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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FIG. 1. Plot of flux data y% against displacement x% together with five different functions f(x% , a, y) resulting 
from five different methods of weighting the yi s. 

tion length is determined experimentally by flux mapping. 
Since the data are always subject to statistical errors, it is 
customary to perform a least squares fit of a function to the 
data, to obtain the best experimental value of relaxation 
length. In the process of making a least squares fit, each 
datum point must be multiplied by an appropriate weight-
ing factor. It is not generally realized, however, that the 
type of weighting factor depends very strongly on the ex-
perimental conditions. 

An experiment performed at this laboratory was subject 
to several types of statistical errors, which could be divided 
into two groups: 

1. Uncertainty of number of counts registered on de-
tector, with each foil counted for the same length of time. 
This results in a complicated weighting factor, somewhat 
between l / y i and l/yi2 (where yi is the value of the flux at 
position Xi). 

2. Those types of errors which have the same relative 
error, and hence should take a weighting factor l/yi2. These 
include uncertainty of position of the foil in the pile and 
also of the foil with respect to the detector, and the uncer-
tainty of the normalization factor of one foil compared to 
the others. 

Because of the above, the proper over-all weighting 



279 LETTERS TO THE EDITOR 

10 15 2 0 2 5 3 0 3 4 

j 
FIG. 2. Slope /? as a function of number of data points. 

factor was unknown, and an experiment in analysis was 
tried. Five different weighting factors were used to analyze 
the same data; the results seem to indicate conclusively 
that the reciprocal square of magnitude (1 /yi2) is the 
proper weighting factor, as shown in Fig. 1. 

The top curve (Fig. la) has each datum point yi weighted 
unity. This curve follows the initial points very closely, 
then gradually ignores the subsequent points. At the bot-
tom end of the curve, there is a complete break away from 
the data. The next curve (Fig. lb) has each datum point 
weighted 1 /yi and exhibits the same tendency of ignoring 
the lower points, but to a smaller degree. The subsequent 
curve (Fig. lc) has each datum point weighted 1 /yi2 as dis-
cussed earlier; this curve fits all the data very well. Beneath 
this lies the curve (Fig. Id) which has each datum point 
weighted l/y%3\ here the curve follows the end points closely 
but begins to separate from the first points. Finally, the 
lowest curve (Fig. Id) has each datum point weighted 
l/yi*. It is as bad at the high end as the Fig. la curve was at 
the low end. Considered together then, these curves show 
that weight unity gives a very bad fit at the low end, weight 
1/y is less bad but still bad at the low end, weight 1/y2 is 
good throughout, weight 1/y3 is poor at the high end, and 
weight 1/y* is as bad at the high end as weight unity was at 
the low end. 

The analysis just described of the five curves of Fig. 1 
can also be made in a different manner, as in Fig. 2. Here 
the slope /5 (the main object of the experiment is to deter-
mine whose reciprocal is the relaxation length) which 
has been evaluated from the data points, is plotted against 
range of data points used in the evaluation. The five dif-
ferent curves give the same five ways of weighting the data 
points yi as before, viz, weight unity, weight 1 /y% , weight 

1 /Vi2j weight 1/yi3, and weight l / y ^ . The upper group of 
five curves represents the effect of cutting off initial points 
of the data; the lower group represents the effect of cutting 
off the terminal points, as follows: the complete set of data 
consisted of 34 points. Thus Pi^u indicates the slope as de-
termined using all data points. And indicates the slope 
as determined starting from the point i and using all con-
secutive points to 34. The running value of i is the abscissa 
for the upper group of five curves. The symbol ^ simi-
larly indicates the slope as determined starting from point 
1 and using all consecutive points to j . The running value 
of j is the abcissa for the lower group of five curves. 

Analysis of the two groups of five curves goes as follows: 
if all the data were perfect, there would be only one value 
of the slope 13. Hence, in that case, all five upper curves 
would coincide to form one horizontal straight line, and 
the lower five curves would give a similar straight line of 
equal 13 value. Because the data are not perfect, it is normal 
to expect a small point to point variation for the (3^u and 

curves. A relatively large point to point variation 
would thus indicate that those points have been given too 
much weight. Consider the two curves for which the data 
points are weighted y° (unity). The upper curve shows 
large point to point variation, while the lower curve for 
weight y° shows practically no variation at all from point 
to point (point to point variation refers to random up and 
down movement of the curves; it does not refer to a sys-
tematic slope or curvature). The inescapable conclusion to 
be drawn from the upper and lower curves for data points 
weighted y° is that the beginning points are weighted too 
strongly and the last points are ignored, which conclusion 
is exactly the same as that reached earlier in this paper 
(see discussion on Fig. 1). Next consider the two curves 
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for which the data are weighted y 1 . Here the situation is 
similar to the weight y° curves, but less severe. The upper 
curve, weight y~l, shows a fair amount of point to point 
variation and the lower curve shows very little; the be-
ginning points are, therefore, weighted more strongly than 
the endpoints. The next group of two curves of weight y~2 

show about the same point to point variation on both the 
upper and lower curves; this indicates that all points are 
weighted equally, which is desirable. The two curves 
weighted y~3 exhibit variations just the reverse of the 
weight y~l curves; i.e., the upper curve shows little varia-
tion and the lower curve shows marked variation. Finally, 
the two curves weighted y~4 exhibit variations just the 
reverse of those of weight y°. The upper curve of weight 
y~A shows no point to point variation at all, and the lower 
curve shows extremely large point to point variations; 
which indicates that the beginning points are ignored and 
the end points are weighted too strongly. The y~4 weight 
curve is as bad for the beginning points as the y° curve is 
for the end points, and vice versa for the other ends. Only 
that curve for which the exponent of the data weight lies 
midway between the extremes of y° and y~4, namely, y~2, 
shows satisfactory dependence upon all the data points. 
This analysis and argument then, seems to show that 
weight y~2 is proper for the data points. 

An interesting phenomenon occurs at data points 12, 13, 
and 14. As can be seen from a careful glance at Fig. lc, 
these three points are apparently all low, by coincidence. 
The remarkable thing is the different effect these three 
points have upon the curves of Fig. 2. The upper curve of 
weight y° shows a distinct trough at points 12 and 13 and 

the lower curve of weight y~4 shows an even more1 pro-
nounced trough at these points. This very pronounced 
trough can only mean that the curves containing them 
weights those points much too strongly, for otherwise two 
low points would have but slight effect on a slope deter-
mined equally from 11 to 22 points. Thus the conclusion 
reached earlier is again evident here, that weight y° is as 
bad at the front end as weight y~4 is bad at the far end. 
Furthermore the weight y~4 upper curve shows no dip at 
all; likewise the weight y° lower curve shows no dip at all. 
Again, as before, this can only mean that the front end 
data points of the weight y~4 curve are ignored, and also 
the far end data points of the y° curve are ignored. Only 
the curves of weight y~2 shows a slight dip for both the 
upper and lower; this is what is expected, and furthermore, 
the exponent 2 being midway between 0 and 4 whose re-
spective weights gave obviously bad results leads again to 
the conclusion that the weight y~2 is indeed the best weight-
ing for the data points. 
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1 The reason that the trough of the lower curve (weight 
y~4) is more pronounced than the trough of the upper curve 
(weight y°) is that the upper trough is generated from 3 data 
points out of a total of 22, while the lower trough is gen-
erated by 3 data points out of 12, i.e., the lower trough is a 
greater fraction of the total data from which it is generated. 




