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This method essentially fits a polynomial of order n to 
w + 1 points, and is quite simple and rapid if the calcula-
tions are properly systematized [2]. However, the precision 
of the interpolated result at x can be improved upon if 
the function being interpolated is indeed a polynomial, 
preferably of low order. It will now be shown that xB2(x) 
is approximately parabolic in x and hence, capable of more 
accurate interpolation than is B2(x). 

Assume that resonance escape, thermal utilization, and 
thermal migration area are the only lattice constants whose 
changes with x are typically the most significant and can 
be approximated as 

p = exp (—a/x) 

f = 1/(1 + ax) 

L2 = V(1 - / ) = Ml 

then in simple one group theory 
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T A B L E I 

COMPARISON OF INTERPOLATION T E C H N I Q U E S 
FOR BUCKLINGS 

Errors of interpolated bucklings in nB 
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1 10226 

1.5 2830b -522 -281 121 
2 3593b 

3 3757b -488 477 -166 
4 29456 

1 1553c 

1.5 3523c -655 -361 128 
2 4183c 

3 3729c -440 734 - 4 9 
4 2394c 

The maximum buckling is at x = xm , where 
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^m \ ™oo J / 01 

Since c\ and c2 typically are weakly dependent on x, and 
since other lattice constants are slowly varying compared 
to x~2 — Xyft near xm , an integration of Eq. (7) yields 

B2 = - A i x + A2 - (A8/X) ( 9 ) 

The Ai are approximately constant. Therefore, xB2 is ap-
proximately parabolic in x near xm . 

Figure 1 shows an example of the extent to which xB2 

is parabolic by testing for linearity in d(xB2)/dx from 
rigorously calculated bucklings [3]. This almost linear be-
havior in the derivative has been found among many other 
calculated and experimental bucklings. 

The above supposition that 

BKx) = - 2 Li Xi B2 (Xi) (10) X i=0 

is more accurate than Eq. (1) by virtue of the parabolic 
nature of xB2(x) has indeed been found to be the case in 
practice. Table I compares Eqs. (1) and (10) as interpola-
tion techniques for obtaining B2 (1.5) and B2 (3) from the 
calculated bucklings, B2 (1), B2 (2), and B2 (4). It is seen 
that Eq. (10) is a few times more accurate than Eq. (1). 
Also, it seems to give surprisingly good interpolated values 
when compared with the calculated bucklings at x = 1.5 
and 3, in spite of the factor of 2 interval size used for in-
terpolation. 

It is believed that Eq. (10) can be useful in connection 
with both theory and experiment. For the former, parame-
ter studies made in reactor design and evaluation could 
conceivably involve fewer buckling calculations without 
loss of appreciable precision. The most precise interpolation 
between experimental points should be based on theoretical 

a This set of bucklings used 0.387 in. diameter, 1.3% en-
riched uranium rods. 

6 This set of bucklings used 0.387 in. diameter, 1.0% en-
riched uranium rods. 

c This set of bucklings used 0.600 in. diameter, 1.0% en-
riched uranium rods, 

calculations of buckling. Lacking the latter, Eq. (10) 
should prove useful. This is especially the case for high 
precision experimental points, which might otherwise have 
a "draftman's eye" type curve drawn through them. 
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D e l a y e d N e u t r o n Effects D u r i n g Flux Tilt 
Transients 

In the July issue of this Journal, two separate articles 
treat the problem of reactor flux during transients (1, 2). 
Each of these articles directs some discussion to the effect 
of the presence of delayed neutrons on the spatial flux 
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shape during a transient. We would like to add a few com-
ments to this discussion. In general, the transient flux shape 
is not significantly affected by delayed neutrons if the 
reactor is small. However, in a reactor which has a dimen-
sion twenty times the migration length or more, delayed 
neutron effects on the transient flux shape begin to be 
significant. Such dimensions are not unheard of, and in 
particular, cores of roughly annular geometry such as 
PWR may have such dimensions around the circumference. 

When an asymmetric instantaneous change in material 
properties is made, the flux shape changes part way toward 
its asymptotic form in a few prompt neutron lifetimes, 
but the remaining change takes place in times character-
istics of the delay precursors. In this respect, the behavior 
of the shape is reminiscent of the behavior displayed by 
the fundamental mode when reactivity is inserted; that is, 
the reactor first experiences a prompt step change in power 
level, followed by a slower variation governed by the 
delayed neutrons. The influence of the delayed neutrons 
on the transient power shape depends upon how large a 
part of the flux tilt takes place promptly. 

This effect may be seen most easily in a simple model, 
an initially uniform bare core with one energy group and 
one group of delayed precursors. At time zero, let a non-
uniform perturbation, SZa(r), be made in the absorption 
cross section in such a way that the reactor remains criti-
cal. After this perturbation, the governing equations are 

V2 + Bio + Bl i - / 3 
~D~O 

\C 
a ) Do V dt 

where 

BMO — 

dC 
— = i^S/o <t> - XC, 
dt 

i»2J/o — 2Jai 

(2) 

Do 
(r) 

Do (3) 

and the subscript zero indicates unperturbed quantities. 
We may examine the transient behavior of the flux shape 

by a first-order perturbation theory and a modal expansion. 
If this is done, the equations governing the expansion 
coefficients are 

ah 
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where ak is the coefficient of the ftth mode in the expansion 
of the flux perturbation, and Ck is the coefficient of the 
&th mode in the expansion of the precursor density per-
turbation. a0 and c0 vanish, since we have chosen the dis-
turbance such that the reactor remains critical. 

These equations may be readily solved. Figure 1 shows 
the time dependence of a typical coefficient, ak , for various 
values of the parameter ABg

2 = B2
0k — B2

g0 . These curves 
show that the time dependence of the flux shape consists 
of a "prompt" jump plus a slow approach to the asymptote 
with time constant the order of a delayed neutron lifetime. 
As the buckling difference becomes smaller, the "prompt" 
jump becomes a smaller part of the whole. 
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FIG. 1. Time behavior of expansion coefficient. 

Solving Eqs. (4) and (5) analytically, one may find that 
the fractional height of the initial jump is 

qfc(0 + 6) ^ 1 
a*(oo) 1 + {$kJM2ABlk) (6) 

For a one-dimensional reactor of length L, AB2
gk = k(k + 2) 

(TVL*)^ 
Equation (6) shows that for small graphite-moderated 

cores of the type examined in reference 2, in which both 
M2 and ABg

2 are large, no substantial effect on the shape 
is produced by the delayed neutrons. However, for hydro-
gen-moderated cores with at least one large dimension, the 
effect of delayed neutrons may be quite significant. For 
example, if the migration area is about 100 cm2, the core 
length is 500 cm, and kw ~ 1; then 

Q3kJM*ABh) « 0.63, 
and in this case, only about two-thirds of the asymptotic 
first-harmonic component manifests itself during the 
prompt jump. 
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Analysis o f Neut ron Flux D a t a f o r Accura te 
Determina t ion o f R e l a x a t i o n Length* 

Experiments with exponential piles usually require the 
measurement of a relaxation length to obtain the essential 
information about moderators, fuels, or lattices. The relaxa-

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 




