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The method of least squares has been applied to the data 
available for the fully turbulent region, and the value of 
the coefficient, C, of Eq. (2) determined for each of the 
lattices investigated. As can be seen by the graphical rep-
resentation of the results in Fig. 1, C appears to vary 
linearly with the S/D ratio. At the same S/D values, square 
pitch lattices, which are more open, give higher values of 
C than do the triangular pitch lattices. At Reynolds num-
bers between 2.5 X 104 and 106 we have for triangular pitch 
lattices, where S/D lies between 1.1 and 1.5 

C = 0.026 (S/D) - 0.006 (3) 
and for square pitch lattices, where S/D lies between 1.1 
and 1.3 

C = 0.042 (S/D) - 0.024 (4) 
It is instructive to compare the results for square and 

triangular pitch lattices when plotted as a function of e, 
the ratio of the water flow area to the total cross sectional 
area of an infinite lattice. As can be seen from Fig. 2, both 
lattice types yield essentially the same heat transfer co-
efficients at equivalent values of e. 

It should be noted that for almost all cases of interest, 
Eqs. (3) and (4) yield higher heat transfer coefficients than 
predicted by the Colburn equation. This should be an aid 
to the reactor designer since somewhat lower fluid veloci-
ties can now be used to obtain the high heat transfer co-
efficients desired. 
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The Double Spherical Harmonic Method for 
Cylinders and Spheres 

Several attempts to extend the double spherical har-
monics method of Yvon (1) to cylindrical and spherical 
systems have appeared in the unpublished reactor tech-
nology literature. Different sets of differential equations 
for the same system have been suggested depending on the 
treatment of a product of singular functions which occurs 
in the analysis. 

In this note we would like to point out that when one 
attempts to use the Yvon method for cylinders or spheres, 
one encounters the problem of finding the product Y-8 of 
a Dirac 8 function and a Heaviside step function, F, that 
is, Y(x) = 1 for x > 0, Y(x) = 0 for z < 0. It is well 
known that even if one interprets these functions as distri-
butions in the sense of L. Schwartz (2), the product Y-8 
is not defined. However, it is possible to make use of a 
product of distributions defined by H. Koenig (3) to ob-
tain double spherical harmonics moment equations for the 
cylinder and sphere. The distribution product of Y-8 de-
fined by Koenig involves an arbitrary constant which must 
be determined by physical considerations. The same result, 
still involving an arbitrary constant, can be obtained 
without explicit use of distribution theory. 

The one-velocity transport equation for a system with 
cylindrical symmetry may be written 

sin 0 [cos <f> ^ f(r, 0, </>) - f(r, 0, <f>)] + 2/(r, 0, <j>) 
dr r d<f> 
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We expand the scattering kernel in ordinary spherical 
harmonics and for simplicity keep only the first term corre-
sponding to isotropic scattering. To expand the flux in the 
double Pi approximation we start with the usual first two 
spherical harmonics required for a symmetrical solution, 
i.e., 1 and sin 0 cos <f>, and construct the corresponding non-
orthogonal set of "double spherical harmonics" 

Fl = (2w)~ll2A, F2 = (2tr)-1/2#, 

Fs = sin 0 cos 4> A, F4 = sin 0 cos (f>B 

where 

A = 1 for — 7r/2 < 0 < 7r/2, 0 otherwise 

B = 1 for tt/2 < <f> < 3x/2, 0 otherwise. 

We can write A and B using Heaviside step functions as 

A = Y_ir/2 — Yw/2 

B = Y*/2 — F3W2 

A corresponding orthogonal set of functions spanning 
the same space is found by the Gramm-Schmidt process 
to be 

F\ , FI , 

F% = (6/7r)1/2^4 (sin 0 cos <f> - i ) 

Fa = (Q/w ) l , 2 B ( s i n 0 COS0 + i ) . 
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The flux may now be expanded as 
4 

/ ( r , 9,*) -^/.-OOFIFO*) 
i=l 

Substituting this into the differential equation gives 

^ D sin 0 cos <f> > F i — 

sin 0 sin </> 

+ (27r)-1/2/2(5jr/2 - 53jr/2) 

- (6/tt)1/2/3 sin 0 sin + (6/t)1 / 2 /3 (sin 0 cos cf> - 1/2) 

' (S-x/2 — 5»/2) 

- (6/tt)1/2/4 sin 0 sin 4>B + (6/tt)1/2/4 (sin 0 cos <f> + 1/2) 

(5tt/2 — 

+ 2 2 = o 2s(2ir)_1/2(/i + /2) + 5(r, 0) 

The scalar flux is V2TT<7O and the current J is 

J = VW2(/IO + 00 

Putt ing P = 1 and /&i = = 0 in the first two equations 
gives the double PO equations for cylinders. These are 
solved to yield 

0o = a/0(2V22«r) + bK0(2V^ar) 

h = - ( l / 2 2 ) [ a / i ( 2 V S S a r ) + bKi(?VZ2ar)] 

One notes that 2\/22ar is the same argument as occurs 
in the slab double P0 . 

The behavior of the differential equations indicates tha t 
there are enough general solutions to construct both in-
terior and exterior solutions. The general analytic solution 
is difficult to obtain except for the nonabsorption case 
where half-order Bessel functions and their integrals occur. 
For the cylinder the double Pi zero absorption solution is 

—* 

W2)J 9O = - j f G+ferO dr' - f f GLfarO dr> + d 

To find the homogeneous moment equations, one sets 
the source term S = 0, multiplies by a basis function, FI, 
and integrates over 0 and <f>. To carry out these operations 
the product Y-8 must be defined. 

H. Koenig has constructed a product space of generalized 
distributions and shown tha t this product space of distri-
butions can be mapped into the space of distributions 
giving a product which contains a finite set of arbitrary 
constants. 

In the case of Y-8 the result is what one would expect 
intuitively, viz., Y-8 = c8 where c is an arbitrary constant 
(4). If one puts Fw25t/2 = CI8V/2 and F_T/25_t/2 = c2d_w2 , 
i t is easy to show tha t one obtains the continuity equation 
only if ci + C2 = 1. Also, the symmetry about the axis 
of the cylinder requires tha t Ci = c2 . The same result can 
be obtained in other ways. For example, the rectangular 
functions A and B can be replaced by smoothed out func-
tions by replacing Y and 5 by the convolution of Y or 8 
with a "regularizing funct ion" which may be chosen as a 
normalized Gaussian. 

The resulting differential equations in the double Pi ap-
proximation are 

h' o + g' i + (P/r)ho + (P/r){h + 220</o = 0 

g' o + h\ + (4 P/r)ht + 22fc0 = 0 

g'o + - &P/r)hi + 62<?i = 0 

h'o + 3FLF'I - (3P/r)ho + (fiP/r)gi + 6 2 ^ = 0 

where 

go = fi + /2 , ho = /i — /2 

gi = (1/V3) (/« + /O, Ai = (VV3) (/. - U) 

and P — 0 for slabs, P — 1 for cylinders, and P = 2 for 
spheres. 

The above equations in the sphere case agree with those 
given by A. Sauer (£). Sauer gives no argument for his 
definition of the product Y-8 which agrees with ours. 

f G-(ar')M+(ar') dr' - — ] 
J ira 

9L = -^/_9/2(AR) 

+ c N -- I+9/2(ar)M-(otr) 

- l - l + — I-9/2(ar)M+(ar) + • , 
42 SX i r a r J 

ho = ^ I+9/2M + ^ I-9/2M 
4 ZJ 

r -[_42 
+ c | - - I+Q/2(ar)M-(ar) - —- I^/2(oir)M+(ar) + 

42# 42 2jTar rar jj 
hi = aI+7/2(ar) + 67—7/2 W) + c[I+7/2(ar)M-(ar) 

- I-7/2(ar)M+(ar)] 

where 

G±(ar) = C5/r)/±7/2(o:r) + al±9/2(ar) 

M±(< : « r ) - 1 U±7/2(ar')/r'] dr' 

a 2 = 1222 

Again the argument « is the same as for the nonabsorption 
double Pi slab case. 

For the spherical case, somewhat similar expressions 
involving Bessel functions of order fifteen halves can be 
obtained. 

The double P1 for cylinders and spheres does not seem 
suitable for hand calculations. However, on physical 
grounds the methods should have features similar to the 
double P for slabs and thus should be useful for the same 
type of problems (6). 
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The Age of U233 Fission Neutrons in Water 

The age to indium resonance energy (1.4 ev) of U233 

fission neutrons slowing down in water has been calculated 
with the SLAG code (1) on the University of Michigan 
IBM-650. The fission spectrum used was measured at Oak 
Ridge (2) with the low energy portion (E < 1.3 Mev) taken 
to be the (U235) Watt spectrum (3). This spectrum, and the 

FIG. I. Fission neutron spectrum of U233 and U235. The 
U235 spectrum is the Watt spectrum given by x (E) = 
0.484 e~E sinh y/2E. 

Watt spectrum, both normalized to unit area, are given in 
Fig. I as a function of u = ln(107/i£) where E is in elec-
tron-volts. The crosses indicate the experimental points, and 
the smooth curve has been drawn by eye. 

The result for r (1.4 ev) is 23.0 zL 3 cm2 compared to a 
value of 25.3 cm2 from the Watt spectrum. The error limits 
were obtained from calculations for curves passing through 
the maximum and minimum error points of the measured 
spectrum. In order to test the sensitivity to the fit to the 
experimental points, a calculation was made for a curve 
generated by connecting adjacent experimental points, 
with no change being observed in the age. Finally, a calcu-
lation was made for the measured fission spectrum of U235 

reported in reference 1, which differs slightly from the Watt 
spectrum, in order to test the possibility of consistent 
errors in the fission spectrum measurements. However, 
this spectrum led to a value of r identical with that given 
by the Watt spectrum. 

The results of these calculations indicate that the age of 
U233 fission neutrons is probably about 8 or 9 per cent lower 
than the age of U235 fission neutrons, a fact which has im-
portant implications in the measurement of rj of U233 by 
critical experimental techniques, such as are now being 
used at ORNL (4). In addition, it indicates that the losses 
to fast leakage from a U233 system will be somewhat less 
than those from a U235 system, which improves the possi-
bility of breeding. It is clear, however, that an age experi-
ment with U233 fission neutrons must be performed because 
of the fairly large error limits on the measured spectrum 
which lead to the error limits of =t 3 cm2 in the age. 

The authors wish to thank the members of the statistical 
and computing laboratory at the University of Michigan 
both for the use of their IBM machines and for assistance 
in running the calculations. The curve was drawn by R. J. 
Mack. 
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Note on Position-Dependent Spectra 

Near boundaries between dissimilar media (A, B, etc.), 
the spatial behavior of the thermal neutron flux is pre-
dicted incorrectly by normal diffusion theory, in which 
energy averages of the constants are taken over the asymp-
totic spectra of A, B, etc. To some extent transport cor-
rections are necessary but the predominant effect is that 
due to a continuous change of spectrum with position in 
going from one medium to another. 

In particular, the observed peaking from a slab water 
gap immersed in a multiplying medium is always higher 
than that predicted by normal diffusion theory. On the 
other hand, the first correction term arising from a one-


