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LETTERS TO THE EDITORS 

Critical Equations for Finite Cylindrical Reactors 

The construction of critical equations for refiected finite cylinder reactor cores presents 
an intrinsic difficulty. (Only thermal reactors with uniform transport properties throughout 
the core and all of an infinite refiector are considered in what follows. The core absorption 
cross section with the fuel absorption subtracted equals that of the reflector.) This arises 
from the necessity of satisfying the fiux continuity boundary conditions at the two rims. 
The standard technique of matching interior (core) and exterior (refiector) eigenfunction 
expansions breaks down along these lines. Nuclear analysis of finite cylinder core, there­
fore, traditionally progresses through substitution of a so-called equivalent core having 
tractable geometry (sphere, slab, infinite cylinder). This process requires the prior assump­
tion of an extrapolation distance. 

Restatement of the problem in integral equation (and variational principle) form re­
places the aforementioned difficulty with one of equal magnitude; to wit, the necessity for 
evaluating messy integrals over the finite cylinder. Use of the momentum space variety 
of variational principle recently introduced by Francis, et al. (1) is the key which permits 
evaluation of such integrals. 

Consider the variational principle for the multiplication constant k expressed in mo­
mentum space: 

[k] 
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(2) 

ITr = ITt/(1 - f). (3) 

Some slight rearrangement of Francis' result (1) is performed to obtain (1). The integrals 
in (1) extend over all of P space, and that in (2) only over the reactor core. The parameters 
ITr and ITt are macroscopic absorption cross sections for the core and reflector regions respec­
tively while f is the thermal utilization for the core region. The transformed kernels T(P) 
and K (P) are as defined in (1). 

If the slowing-down kernel K(r) is assumed a convolution of Yukawa kernels, and the 
thermal diffusion kernel T(r) is also assumed to have Yukawa form, then all the integrals 
in (1) involving kernels are linear combinations (2) of one integral form. Upon assuming a 
constant trial function 

q:.,-(P) = (41ra/xy) sin bx J1(ay) 
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FIG. 1. D.k/k vs a for various b; >. = 6.0 em, f = 0.90. 
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FIG. 2. tJ.k/k vs a for various >., b = 10.0 em, f = 0.90. 
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this form becomes 

8a
2
b 1"' sin

2 
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0 y 1 + £2[(y/a)2 + \x/b)2] • 

(6) 

The quantities a, bare core radius and half-height respectively while Lis a group diffusion 
length. Similarly x, y are the axial and radial components of a cylindrical coordinate 
system in P space. 

Equation (6) is approximately evaluated as 
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In the above Jn(z), Kn(z) are the Bessel functons of standard definition and Kin(z) is the 
transcendent discussed by Bickley (3). This result reduces to the previously derived forms 
(2) for an infinite cylinder (b--> oo) or slab (a--> oo) in the appropriate limit. The integration 
in (1) which does not involve a kernel is trivial. 

The following situation is explored: A finite cylinder reactor core is light water moder­
ated and reflected. Neutron slowing down is described by the three group synthetic kernel 
(4). The k required for criticality is calculated in the constant trial function approximation. 
An equivalent sphere radius R is next found by equating bucklings 

(
2.4048)2 ( 71' )2 ( 7r )2 
a + A + 2(b + A) = R + A 

(8) 

The A is an extrapolation distance. The k for this sphere is calculated (2), also in the con­
stant trial function approximation, and compared with the finite cylinder k 

l:ik kcylinder - ksphe<e 

k - kcyliuder 
(9) 

In Fig. 1, (9) is plotted for a range of core sizes. In Fig. 2 the sensitivity of results to 
A is examined. Note that the magnitude of !:ik/k appraises the validity of the sphericaliza­
tion process. 

An improved trial function would discriminate between that part of !:ik/k which is real 
and that part which reflects the inadequacy of (4). Inclusion of a parabolic term in the 
trial function, while increasing the tedious algebra many-fold, presents no major obstacle. 

I am indebted to Ayesha Gill for carrying out the numerical work. 
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