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L E T T E R S T O T H E E D I T O R S 

A Dynamic Programming Solution to a Problem in 
Heavy W a t e r Production 

In a recent paper (1), the problem of designing a feasible distillation plant for the pro-
duction of heavy water was discussed. Since large amounts of steam are required, the cost 
of the process would ordinarily be prohibitive from the stand-point of plant size, and the 
quantity of fuel required for heating. The authors, however, have in mind the use of geo-
thermal steam (2), which renders the essential constraint that of plant size. 

Under various assumptions concerning the nature of the distillation process, the problem 
of determining the most efficient cascading process is reduced in the first paper cited above 
to a multi-dimensional maximization problem, which the authors solved approximately 
using an iterative technique. Since the actual physical process is multi-stage, it may be 
expected that the theory of dynamic programming (3, 4) will furnish a more systematic 
computational solution to questions of this type, and to those arising from more realistic 
assumptions. In this letter, we shall consider only one case treated by the cited authors. 

The Analytic Problem 
Following the discussion of Marchetti (£), and that given in (1), the mathematical prob-

lem is that of minimizing the plant size for an ra-cascade process, as given by 

iPi (1) 

subject to the constraints 

J J ai = J, at > 1. (2) 
i=1 

Here I is the desired total enrichment, and ai is the enrichment per stage. The quantities 
pi are known functions of the ai determined by the relations 

P i i a i ~ 1 } = log ( ( 3 ) 
\®i ~ Pi) 

(4) 

(fli — Pi)( 1 — Pi) 

with 0 < pi < 1 (5). Finally, 

Ni = 1.5 X 10"4, N2 - aiNi , • • • , Ni+i = a{Ni , % = 1, 2, - • • , m - 1, 

Nm+l = INi . 

In the case treated in (1), I = 300. 
Setting 

g{ad = - log (5) 
pi \1 — pi j 
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and referring to (4), we see that the problem is equivalent to that of minimizing the function 

v = g(ai) + h b ••• H <6) 

a,i ai a2 ai flfc • • • om_i 

over all at subject to the constraints 

aia2 • - am = I, ai > 1. (7) 
Variational problems of this type, which can be quite difficult to treat by conventional 

methods, can be resolved in a simple fashion computationally, and occasionally analyti-
cally, using the techniques of dynamic programming. 

Dynamic Programming Formulation 
Let us introduce the sequence of functions \fk(x)}, defined as follows: 

U ) = Min L f l l ) + ^ + + • • • + - J ™ — ] 
[_ jo{) j_ ai ai(h ai(k ••• (he-ij 

(8) 

for k = 2, 3, • • • , where the ai are subject to 

0i02 • • • ak = x, at > 1 (9) 

and x may assume any positive value, greater than one. 
The function f2(x) is readily determined from (8) and (9), namely 

/2(x) - Min [flr(ai) + g(a2)/al] (10) 
a i,a,2 

where &ia2 = x, a\ , a2 > 1. 
Let us now derive a recurrence relation connecting fk+i(x) with fk(x). Writing 

fk+i(x) 

we see that 

= Min L a , ) + I U ) + ^ + • • • + - ^ U l ( 1 1 ) 
{at-} [_ ai { a2 a2o3 • • • akJ J 

fk+i(x) = Min g(ai) + - / * ( - ) ^ 
ax>l Oi \Oi /J 

for k = 2,3, - - . 
This is an application of the principle of optimality (3, 4), which in this case has the fol-

lowing simple physical interpretation: "Whatever enrichment is attained in the first cas-
cade, at whatever cost in volume of plant, the remaining enrichment is to be obtained using 
minimum plant volume." 

The solution of the original minimization is thus reduced to determining the sequence 
lfk(x)}, using the recurrence relation in (12). This is a very simple process which can be 
carried out via a direct hand computation, a direct computation on a digital computer, or 
by using variational techniques. 

Discussion 
The technique discussed in the preceding section enables us to consider more realistic 

processes. If we allow inhomogeneous cascades, we are confronted by the problem of mini-
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mizing an expression of the form 

*<«•) + £ 9 — (13) 
CLi-l^i ' • • a>m-1 

where the sequence is known, over the same region as above. 
To treat a problem of this type introduce the sequence of functions 

fkix) 

where the a* are subject to 

for k = 1 , 2, • • • , m — 1 . 
Then 

= Min \gk(ak) + ± ^ ] (14) 
{di} i=k+l ai~lai flm-lj 

akak+1 am = x, a; > 1 (15) 

fm.,{x) = Min L ^ L O ™ - , ) + (16) 
flm-l»®m [_ Urn-l J 

over am~iam = x, am-i , > 1, and as before, 

fk{x) = Min gk(ak) + - fk+1 ( - J . (17) 
ak> 1 [_ ak \ak/ J 

The computational solution is similar to that for Eq. (12). 
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Critical Equation for the Bare W a t e r - M o d e r a t e d Reactor 

A critical equation for the bare water-moderated reactor has been derived using the 
Goertzel-Selengut method. Neutron slowing down was assumed to be due to hydrogen alone, 
and the fission source was taken to be monoenergetic. 

The flux at lethargy u in the slowing down region satisfies Eq. (1) 

D(u)V*4>{r, u) - [2«(w) + W w ) ] 0 ( r , u) + g(r, u) = 0, (1) 




