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Our experience has been that one iteration takes about four hours of hand computation 
and yields the reactivity with an accuracy of about 1%, even for rather bad flux shape 
guesses. This compares favorably with the same problems done by purely analytical or 
purely numerical methods. 

For complicated internal and external reflectors, variants of the matrix method {2) 
may be used to determine the coefficients m and b in the boundary conditions. 

The M o d a l Non-escape Probability of Neutrons for Convex 
Bodies 

Neutrons originating within or incident upon a body of arbitrary shape will suffer 
multiple collisions within the body before escaping or being absorbed. If the body is very 
small, only a few successive collisions are required for the spatial distribution to approach 
a limiting shape which is determined by the geometry of the body. In general, the larger 
the dimensions of the body in mean free paths, the greater is the number of successive 
collisions required for the neutron distribution to tend toward this limiting shape. In the 
limit of a large number of collisions, it is supposed that the nth collision generation be 
"mult ipl ied" in amount sufficient to effect the same total number of collisions in the n + 1th 
generation (I).1 The spatial distribution in this event will be that characteristic of a "crit i -
ca l " assembly of the same geometry. The average nonescape probability of neutrons for 
this limiting distribution may then be found from the extrapolated end-point method 
(2, 8 ,4 ) as applied to bare critical reactors. 

We confine our discussion to homogeneous convex bodies which scatter neutrons iso-
tropically without energy loss. With these conditions, the neutron flux density distribution 
in a bare critical assembly is obtained from the solution of the following equation 

where 2 = 2S + Xa is the total macroscopic cross section of the reactor's constituents and 
c is the average number of secondary neutrons produced per collision.2 

1 For a fuller discussion in this limiting distribution see (1). 
2 As discussed in (1), it is usually sufficient in accounting for anisotropy of scattering to 

replace the scattering or elastic cross section and the total cross section by the elastic 
transport and total transport cross sections, respectively. 
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For bodies of one-dimensional symmetry, the extrapolated end-point method informs us 
that the asymptotic or normal mode distribution of neutrons is given by an eigenfunction 
Z(r) of the wave equation, provided the associated wave number ko satisfies a certain 
characteristic equation. The appropriate wave number is found to be the positive root of the 
transcendental equation 

t a i r 1 (fcp/Z) 
1 = ( 2 ) 

which follows from substitution of the Fourier integral expansion of the neutron flux into 
both sides of the critical Eq. (1) and integration over all coordinate space. 

Furthermore, if a is a typical dimension of the reactor, at the outer boundary we have 
the condition of the extrapolated end point 

Z(a + z0) = 0 (3) 

where Zo from the end-point method is given by 

z = (0.71044609/c2)#(c). (4) 

Boundary condition (3) implies 

h(a + z0) = 7 (5) 

where y is the smallest positive root of the physically pertinent eigenfunction Z(r). 
Combining (2), (4), and (5) we arrive at the following transcendental equation for 

(fto/2) = KO 

tan-1/co y 2 a 
(6) 

Ko 0.71ff (c)*o 0.71tf (c) * 

The quantity on the left of (6) may be readily interpreted as the average nonescape 
probability or collision fraction Fm for neutrons in a modal distribution. In critical Eq. (1), 
c must be greater than unity in order to make up for the loss of neutrons by leakage from 
the reactor. Since transcendental Eq. (2) must be satisfied simultaneously, it follows that 
Fm = tan - 1 (/bo/2)/ ( fco /2) is the average nonescape probability for neutrons in a modal 
distribution. Solving Eq. (6) for a given 2a then gives from either side the desired collision 
fraction. 

In (4) the quantity H(c) increases monotonically from unity for c — 1 to 1.0556 as c —• oo 
(4). For a slab of half a mean free path in thickness the error in Fm from taking H{c) to 
be unity is less than 1%, which is less than the error in assuming the applicability of the 
one-boundary extrapolated end-point results to a slab of such small dimensions. The 
latter error may be estimated by comparison with the average non-escape probability 
calculated for a constant source distribution (4). Figure 1 shows, for H(c) equal to unity, 
the collision fraction Fm as a function of X = 2a for a sphere, an infinite cylinder and an 
infinite slab. 

In a self-sustaining homogeneous bare reactor, the neutron spatial distribution is already 
in a modal or near modal distribution. In the thermal group of neutrons or in a fast group 
of neutrons for which an appropriate "removal" cross section may be defined, the prob-
ability that a neutron entering the group be absorbed on its nth collision is given by 
(2a/2)(2s/2)n~1(^m)71. The capture fraction Fmg for the modal group of neutrons is then 
the sum of the separate probabilities giving the well-known result (£, 7) 
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FIG. 1. Collision probability for modal distribution. For a cylinder and a sphere, X is 
the radius; for a slab, X is the half-thickness. X is in units of total meanfree paths. 

» / S \ B _ 1 (2 
Fmo= ( s „ / s ) S f ^ j (Fmy« = 

(2„/2)F„ 2a 

(Z s /2)Fm [ f c o / t a n " 1 (fc„/2)] - 2 S ' 
(7) 

For a large reactor k0 becomes small, so that Fmg tends toward the elementary diffusion 
theory result (7): 

[1 + = (1 + W ) - 1 . (8) 

In Fig. 2 are compared expressions (7) and (8) for a sphere for several absorption 
probabilities. 

We may rewrite (6) in a form amenable to extension to other geometrical shapes, namely3 

KO2 = T 2 / [X + 0.71H(c)Fm(Ko)p. (9) 

As the form of critical equation (1) is invariant under arbitrary orthogonal transformation 

3 When /co is small as for a large reactor, then H(c) and Fm(*o) approximate unity and 
expression (9) becomes equivalent to the elementary diffusion theory definition for the 
geometric buckling (7), i.e., B2 = (SKO)2. 
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FIG. 2. Capture fraction for modal distribution for a sphere. X is the radius of the 

sphere in units of total mean free paths. 

of coordinates, a multiple Fourier integral expansion of the neutron flux when substi-
tuted into (1) gives (2) where now 

KO2 = K*2 + + (10) 

The nonescape probability Fm may then be found in the asymptotic sense of this note for 
any body for which K02 may be determined. For example, we can write immediately for a 
right circular cylinder 

Or/2)2 (2.4048)2 

K° (X* + 0.71H(c)FM)2 CX, + 0.7lH(c)FJMyr-
 {

 ' 

where Xz is the half-height of the cylinder in units of total mean free paths and Xr is the 
radius of the cylinder in the same units. In practice the solution of (11) for the given di-
mensions of a cylinder is found by a rapidly converging iterative process which simul-
taneously determines the collision fraction Fm . 
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Fission Product Recoil Separat ion in Suspension Reactors 

The interesting paper of Wolfgang (1) on the use of fission product recoil separation in 
power reactors prompts us to comment on the use of this principle in the slurry reactor at 
present being developed in the Netherlands. 

The use of the recoil principle has been described some years ago (2). Our remarks will 
be restricted to a slurry of uranium oxide, in water of pH about 7 as measured at room 
temperature. 

According to their chemical behavior the fission products can be divided into four 
groups: 
1. the gases, which will be swept out by decomposition gases (in case water decomposition 

is low, additional sparging can be provided); 
2. ions which are not adsorbed; e.g., are to be removed by treatment of the liquid from 

which the fuel particles are separated; 
3. ions which show a normal adsorption behavior, e.g., Cs+ ; 
4. ions which show an adsorption behavior of the "radiocolloidal type , " e.g., the 

lanthanides. 
The latter elements only will be discussed more extensively. The adsorption of the 

lanthanides at room temperature begins at pH about 3 and is virtually complete from 
pH = 5 upward. 

Sequestering agents are effective in removing adsorbed material or preventing adsorp-
tion. This is true only at low temperature however. At high temperatures the lanthanides 
are extremely strongly bound to such surfaces as uranium oxide and stainless steel so that 
rough treatments, as boiling with 6 N hydrochloric acid, are then necessary for their re 
moval. This phenomenon alone would suffice to rule out the use of sequestering agents in 
reactors at high temperature, decomposition in the radiation field and thermal instability 
being other arguments. 

With respect to these difficulties we have found it useful to apply a second solid phase 
in the slurry, as is also suggested by Wolfgang. Active charcoal is our preferred choice here. 
It has been shown that about 90% of lanthanides can be removed from the slurry system 
with charcoal at concentrations of the latter as low as 2 g /kg uranium oxide. Patents are 

4 Operated for the U. S. Atomic Energy Commission by the General Electric Company 
under Contract W-31-109-52. 




