Letters to the Editor

Comments on “Investigation of Interface-Current
Solution Techniques for Coupled
Heterogeneous Cells”

I. INTRODUCTION

In the introduction to Ref. 1, Thomsen makes a statement
about a technique that we contributed a few years ago.Z Thom-
sen states that we could not conclude that the system matrix
originating from the interface-current method can be symme-
trized. Symmetrization is indeed possible, but Thomsen may
have been misled by a few errors in some of our formulas. How-
ever, our paper is correct once these errors are corrected. Any
reader interested in this interface-current symmetrization pro-
cess may also refer to another presentation (with different no-
tations but with the same results) at the Paris conference eight
years ago.’

I1. CORRIGENDUM FOR SEC. III

In Eq. (4a), we assumed that unknowns corresponding to
zones with zero scattering cross sections and external faces with
zero albedos (i.e., zero incoming currents) are eliminated. Be-
cause flux/current values for these unknowns can be recon-
structed directly from the solution vectors eX, these are not
independent unknowns of the interface-current system to be
solved.

As for the second equation, which involves the boundary
conditions, instead of producing multiple unrelated equations
for each cell as in Eq. (4a), we will get a global coupling equa-
tion. The global feedback matrix R can be written as the prod-
uct of a diagonal matrix U with a symmetric orthogonal matrix
P used to couple the interface currents. The components of the
diagonal matrix assigned to cell K are defined as

UK =4axVEss
Ull.(+a,L+B = TSaAcxaaﬂ ’

ij s

and
K — 17K —
UL+a,l - Li+a ™ O ’

where A, is the albedo if surface « is an external face and is
equal to one if surface « is an interface.

We are now able to state the second set of interface-current
equations for cell K as Eq. (4b) in Ref. 2. The problem of solv-
ing the transport equation inside domain D has therefore been
reduced to the simultaneous resolution of the two sets of
interface-current equations [Egs. (4a) and (4b)], which we will
now combine into a single symmetric linear equation. To do
this, let us first invert the boundary condition matrix R as

(R—I)KL - TKL + 5KL(BK)—I ,
where
TKL =(1- 5KL)PKL(UL)_1

and
(BK)—-I - PKK(UK)—I .

The global system may then be reduced to the form given
by Eq. (5) in Ref. 2 where the global system matrix M = {MXL )
is defined as

MKL = 6KL DK + GKTKL(GL)T
and the cell diagonal matrix is defined as
DK = GK(BK)—-I(GK)T_ QK .
Note that the matrix M is symmetric owing to the simple
form of matrices G and B.
The first error in our original paper comes from an incon-
sistent definition of the matrix T, incorrectly declared as or-
thogonal because we forgot to include the geometric scaling

factors. The second error is that the subtraction of the QX ma-
trix was forgotten in the cell diagonal matrices DX.

III. A NUMERICAL EXAMPLE

A simple numerical example will now be presented to help
in understanding the symmetrization process that is implicit in
our solution algorithm. A two-cell assembly is constructed as
indicated in Fig. 1, with the one-speed cross sections and fixed
source indicated in Table I.

These data were first processed by the EURYDICE-2 op-
tion of DRAGON (Ref. 4) using the DP-0 option, and the fol-
lowing cellwise-dependent response matrices were obtained:

~
2.5425
1.3588
0.8397

r8.7400 2.1852 2.5425 2.5425 2.5425
2.1852 1.8328 1.3588 1.3588 1.3588
2.5425 1.3588 0.0 0.9034 0.8397
2.5425 1.3588 0.9034 0.0 0.8397 0.8397
2.5425 1.3588 0.8397 0.8397 0.0 0.9034
(2.5425 1.3588 0.8397 0.8397 0.9034 0.0
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Fig. 1. Description of the two-cell assembly. The rod radii are
equal to 0.6 and 0.5 cm in the square and rectangular cells, respectively.
The neutrons are reflected isotropically around the assembly.
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and TABLE 1
(51067 3.0363 1.4290 1.4290 1.8013 1.8013\ Nuclear Data for the One-Speed Two-Cell Assembly
3.0363 6.3250 2.5231 2.5231 2.7639 2.7639 Type of L, s Fixed Source
. - -1 -1 -1 -3
i |1:4290 25231 0.0 0.6807 0.8482 08482 Region | Material | (cm™) | (cm™) | (s7'-cm™)
T 1.4290 2.5231 0.6807 0.0 0.8482 0.8482 |’ 1 Fuel 0.35 0.3 1.5
2 Water 0.45 0.4 0.0
1.8013 2.7639 0.8482 0.8482 0.0 1.0518 3 Fuel 0.4 0.3 25
(1.8013 2.7639 0.8482 0.8482 1.0518 0.0 4 Water 0.45 0.4 0.0

J

where the cell-dependent unknowns are the two fluxes followed
by the X-oriented and Y-oriented interface currents, respec-
tively.

The diagonal GX and (UX)~! matrices are respectively
given by

G' = diag(14.2122 7.0249 4.0841 4.0841 4.0841 4.0841)
G2 = diag(9.8696 14.6348 4.0841 4.0841 4.7124 4.7124)

The linear system is next solved using the following fixed
source:

é=col(1.5 0 0000250000 0).

(Ul)—l = dlag(02345 0.3559 0.2449 0.2449 (.2449 02449) And, the Corresponding solution is obtained as e =
(M)~'Qé. The neutron fluxes are finally given by
(U?)"! = diag(0.3377 0.1708 0.2449 0.2449 0.2122 0.2122).
The global permutation matrix P corresponding to the vol- ei/Lf 5.072/0.3 16.907
ume and surface numbering is 6= ey/Ls 6.633/0.4 16.583
-\ = =
(1 00000000000 e;/L3 4.964/0.3 16.547
01 000O0O0O0O0O0CO0O0 eg/L} 6.462/0.4 16.156
001000000000 As one can see, the interface-current symmetrization pro-
00 00O0O0O0OCT11 O0O0OOQO0 cess is rather difficult to explain, and we apologize for these few
errors that led Thomsen to conclude that symmetrization was
00001 0O0O0O0OO0OO0ODO0 impossible.
p 0 00 001 0O0O0O0OO0ODO
= Robert Roy
0 00 1
000 00000 Alain Hébert
000 O0O0O0O0OTL OO0OCO Guy Marleau
000100O0O0OO0OO0OO0O0 Ecole Polytechnique de Montréal
Case postale 6079, succ. Centre-ville
000000000100 Montréal (Québec), Canada
00 000O0O0OOO0OO0ODTI1O0 .
April 10, 1995
(0 0 00 0000O0O0CO 1]
The global system matrix M is then obtained using Eq. (7):
3
[ 38.634 —2.185 —2.542 -—-2.542 -2.542 -2.542 0.0 0.0 0.0 0.0 0.0 0.0
—2.185 15.730 -1.359 —-1.359 —-1.359 -1.359 0.0 0.0 0.0 0.0 0.0 0.0
—2.542 -—1.359 4.084 -—-0.903 -—0.840 -—0.840 0.0 0.0 0.0 0.0 0.0 0.0
—-2.542 —1.359 -0.903 0.0 —0.840 —0.840 0.0 0.0 4.084 0.0 0.0 0.0
—2.542 -1.359 -—-0.840 —0.840 4.084 —-0.903 0.0 0.0 0.0 0.0 0.0 0.0
M —2.542 -—1,359 -0.840 —0.840 —-0.903 4.084 0.0 0.0 0.0 0.0 0.0 0.0
= 0.0 0.0 0.0 0.0 0.0 0.0 27.792 —3.036 —1.429 -—-1.429 —1.801 -1.801[ "'
0.0 0.0 0.0 0.0 0.0 0.0 —3.036 30.262 -2.523 -2.523 -2.764 -—2.764
0.0 0.0 0.0 4.084 0.0 0.0 —1.429 -—-2.523 0.0 —0.681 —0.848 -—0.848
0.0 0.0 0.0 0.0 0.0 0.0 —1.429 -2.523 —0.681 4.084 -—0.848 —0.848
0.0 0.0 0.0 0.0 0.0 0.0 —1.801 -2.764 —0.848 —0.848 4.712 -1.052
| 0.0 0.0 0.0 0.0 0.0 0.0 —1.801 -—-2.764 -0.848 —0.848 -—1.052 4.712 |

where we can observe the symmetry of this matrix.
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Reply to “Comments on ‘Investigation of
Interface-Current Solution Techniques for
Coupled Heterogeneous Cells’ ”

The corrigendum by Roy, Hébert, and Marleau! has been
of great help in understanding their transformations of the
multicell system equations. While retaining Eqs. (4) and (5) of
the original paper,” Roy, Hébert, and Marleau replace all the
associated, unnumbered equations (except the G terms) by the
new ones. I shall not hesitate any further to recognize the sym-
metrization of the system matrix and the subsequent applica-
tion of the alternate direction implicit (ADI) procedure, which
seems to overcome the problem that the symmetric matrix is not
positive definite.

Having grasped the basic idea, however, Roy, Hébert, and
Marleau’s formulation seems unnecessarily complicated. Fur-
thermore, the same principles can be applied to the multiple-
flight probability, interface-current equations in which the fluxes
are eliminated. I do not share Roy, Hébert, and Marleau’s con-
cerns about this reduction (based on some “computational
discrepancies” that they seem to have had earlier?). On the con-
trary, I found that the reduction works well, and in my view,
it is preferable to iterate on the smaller system of currents only.
Hence, it is interesting to discuss the symmetrization of the
latter system in some detail.

Substituting the current densities J,7 = j; /4, into the cell
equations [Eq. (9) of my paper?®], we have

AnJ: =, + anlAl']I_’
!

where it may be recalled that ¢, is the outgoing current due to
sources [Eq. (22)] and that symmetry is ensured by the reci-
procity relation for multiple-flight transmission probabilities
PutA; = DinAp.

The corresponding system equation in matrix notation is
expressed as

AJ*=C + PAJ™,
where A is a diagonal matrix and P is a block-diagonal matrix,

assuming cellwise organization of the current vectors.
The coupling equation is

Jr=TJ",
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where the nonzero entries of the symmetric connectivity ma-
trix T are 1 for interfaces and o ' for boundaries (diagonal
or off-diagonal for reflective or cyclic boundary conditions,
respectively).

Now, eliminating J* and dropping the superscript on J~,
we obtain after some reorganization

(T-PAJ=C .

Since any pair of symmetric entries in T corresponds to the two
sides of an interface (or corresponding boundaries in the cy-
clic case) having the same area, the system matrix is seen to
be symmetric. Based on the conservation equation [Eq. (15)],
the column sums of the system can be seen to be nonnegative.
However, the system matrix is not diagonally dominant, which
is a prerequisite for using point successive overrelaxation.

Apparently, the lack of diagonal dominance is not impor-
tant when using the ADI procedure, which gave good conver-
gence as described by Roy, Hébert, and Marleau in Sec. IV of
their paper.? Hence, it seems fair to assume that this also holds
for the reduced system considered here.

Assume that we renumber the currents, starting with all the
currents parallel to the X axis, taken cell by cell and line by line,
followed in the same way by the currents along the other co-
ordinate direction(s). Here, we further limit our discussion to
the case with reflective boundary conditions. Then, the diago-
nal blocks containing all the nonzero entries of T will become
tridiagonal. In the ADI iterations, all the off-diagonal blocks
are moved to the right side of the equation, where we use the
most recent currents. This matrix splitting allows a simple it-
eration calculation based on the forward elimination and back-
ward substitution method.

The question is whether this special ADI method with over-
relaxation (reminiscent of successive line overrelaxation) can be
made more efficient than the point iterative method I described
in my paper. Considering the increased number of operations
per ADI iteration, this requires an improved convergence rate.
The answer to this question is not obvious. For the time being,
however, I am quite satisfied with the performance of my old
method, so I shall leave the question open to other investi-
gators.

Knud L. Thomsen

Risg National Laboratory

Nuclear Safety Research Department
P.O. Box 49

DK-4000 Roskilde, Denmark

June 13, 1995
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