
Letter to the Editor 

Comments on the Treatment of Transverse 
Leakage in Advanced Nodal Codes 

for Hexagonal Nodes 

Reference 1 describes Wagner's advanced nodal code for 
hexagonal nodes. Wagner suggests a very interesting approach 
to handling the singular terms in the transverse leakage of the 
nodal equations for hexagonal nodes. His solution is very sim-
ple: ignore the singular terms and, to compensate, artificially 
modify the transversely integrated flux (TI flux). The great ad-
vantage of this approach is that the nodal equations remain es-
sentially identical to those for rectangular nodes (except for, of 
course, having three instead of two sets of nodal equations on 
a radial plane). Wagner's argument seems to be based on intu-
ition, but his code works surprisingly well. Wagner's method 
raises the intriguing question if there indeed exists a definition 
of the TI flux, which is transversely averaged with some kind 
of weighting function or along a certain transverse path so that 
these singular terms could be accounted for in the definition of 
the TI flux and would not appear in the nodal equations. 

I maintain that it is possible to put Wagner's formulation on 
rigorous mathematical grounds via the use of conformal map-
ping of a hexagonal node to a rectangular node. But the result-
ing dimensionally reduced nodal equations, satisfied rigorously 
by the TI fluxes, no longer stand for a homogeneous node. The 
node absorption and fission cross sections appearing in the 
nodal equations are modified by a geometry factor that reflects 
local area scaling due to the conformal mapping. If one intro-
duces the assumption that this location-dependent geometry fac-
tor could be approximated by an averaged constant, Wagner's 
nodal equations then result. This geometry factor depends only 
on the node geometry, not on any physical parameter. It can be 
explicitly and generically computed from the conformal map-
ping function. A study of this geometry factor as a function of 
position enables one to assess the effect of Wagner's assump-
tion. For nodal expansion methods, where node homogeneity 
is not a necessary condition, this geometry factor need not be 
assumed constant and can be represented by nodal expansion 
functions. 

Conformal mapping preserves the angle between intersecting 
curves and therefore maps a set of orthogonal curvilinear coor-
dinates to another set of such coordinates. It has been used in 
electrostatics and fluid mechanics to map equipotential and field 
curves from one geometry to another. The electrostatic and fluid 
mechanics equations are Laplacian-type differential equations. 
The Laplacian differential operator is invariant under conformal 
mapping. This is why conformal mapping is useful in these two 
fields. Interestingly, the neutron diffusion equation is also a 
Laplacian differential equation, and there is the analogy of neu-

tron current being the vector gradient of neutron flux versus 
electric field being the vector gradient of electric potential. The 
orthogonality between neutron flux and current is always pre-
served through conformal mappings. When mapping (orthog-
onal) coordinates conformally to (u,v), the neutron 
diffusion equation in a homogeneous node transforms from 

[-L2(d2/dx2 + d2/dy2) + 1 ]<t>(x,y) = k<t>{x,y) (1) 
to 

[~L2(d2/du2 + d2/dv2) + g2(u,v)] <l>(u, v) 
= g2(u,v)H(u,v) , (2) 

where g2 is the aforementioned geometry factor. This geome-
try factor g2 has some very interesting properties of direct rel-
evance to our discussion. This factor is the square of the linear 
scale change of going from x-y to u-v and is therefore the ratio 
of the local area change. Furthermore, the linear scale change 
g is independent of directions; that is at a given location, the me-
dium is locally scaled by the same factor along all directions. 
The conformal mapping function is an analytic function trans-
forming the complex variable z = x + iy to the complex variable 
w = u + iv, and the g function is the norm of the complex de-
rivative dz/dw. Therefore, this function g depends only on the 
conformal mapping function, which depends only on the node 
geometry. 

From the foregoing two equations, one can see that if one 
conformally transforms a node from one to another geometry, 
the diffusion equation remains the same except for a modifica-
tion on k — 1 (k is the fission multiplication factor) by the ge-
ometry factor g2(u,v). Now we map a hexagonal node to a 
rectangular node as shown in Fig. 1. (This must be a rectangular 
node, not a square node. A hexagonal node cannot be confor-
mally mapped to a square node with four coinciding vertices.) 
The Cartesian grids inside the rectangular node correspond to 
the curvilinear grids inside the hexagonal node. Equation (2) can 
be reduced to one dimension by performing the straightforward 
transverse integration in v, and the resulting one-dimensional 
equation in u will not contain any singularity. The TI flux cor-
responds to integrating the flux <t>(x,y) along a curved trans-
verse path inside the hexagonal node. Since nodal equations are 
to be expressed in terms of node surface currents, it is impor-
tant that the surface currents of the rectangular node are phys-
ically the same as the surface currents of the hexagonal node. 
This is true because the corresponding grids in the two nodes all 
intercept the surface boundary of the nodes perpendicularly be-
cause the mapping is conformal. However, the magnitude of the 
surface current of the rectangular node is scaled from the cor-
responding one of the hexagonal node by the inverse of the 
value of g(u, v) at the boundary. (Being the linear scale change 



at that point, g affects the derivative there by the multiplier of 
1/g.) The same linear scale g applies to the length of the surface 
element since the local mapping scale is isotropic for conformal 
mapping as explained earlier. Therefore, not only does the sur-
face current remain physically the same current through the 
mapping, but the product of the surface current and its surface 
element also remain invariant through the mapping. With these 
features established, it becomes obvious that rigorous nodal 
equations for hexagonal nodes that are formally identical to 
nodal equations for rectangular nodes can be easily derived. 

Wagner's simple form of nodal equations results if one as-
sumes that the g function in Eq. (2) can be approximated by a 
properly chosen "averaged" constant. Such an assumption can 
be quantitatively assessed by examining the behavior of the ge-
ometry factor function, which can be explicitly calculated from 
the mapping function. For nodal expansion methods, where the 
source term is to be expanded in functions, the g function need 
not be approximated as a constant and can be expanded as well. 

Finally, the mapping function can be obtained through the 
use of the Schwarz-Christoffel transformation to map the hexa-
gon to a circle and then back from the circle to the rectangle. 
The mapping function will result in a contour integral on a com-
plex variable plane. The norm of the integrand of this contour 

integral is the scale function g, which can be numerically calcu-
lated. 

After all these discussions, a note of clarification is needed. 
We are talking about conformally mapping a single hexagonal 
node to a single rectangular node. This is all that is needed to 
establish the desired nodal equations. This by no means implies 
that the whole core composed of hexagonal assemblies can be 
mapped to a whole core composed of rectangular assemblies. 
I do not think that the hexagonal assemblies can be simulta-
neously mapped to rectangular assemblies with a single mapping. 
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