LETTERS TO THE EDITOR

131

TABLE I

Iterative Solutions vs Exact Solution*

=v[° oG
Exact - Approximate

1.t ar

Percent Difference =

X 100

Exact
E. E* Ecb Ec°
(B/ 1r)2 Exact (Ref. 2) Value Percent Diff. Value Percent Diff. Value Percent Diff.

1.2 0.235 0.2349 0.085 0.2349 0.2349
2 1.162 1.166 0.172 1.1616 1.1622
3 2.297 2.306 0.391 2.2960 2.3002 0.051
4 3.408 3.395 0.381 3.4141 0.179 3.4276 0.575
7 6.640 6.637 0.045 6.8136 2.614 6.9311 4.384
8 7.693 7.720 0.376 8.0190 4.238 8.2224 6.881

10 9.774 9.921 1.504 10.6446 8.906 11.2024 14.615

*In Eq. (1) « is taken as 24 as in Ref. 2.

"‘Taken from Ref. 1 supposedly calculated from Eqgs. (3) and (4).
5YValues obtained by us using Eqs. (3) and (4).
“Values obtained from Eqs. (9) and (10).

Lg0s = L10z + ay [sz:eodt' + 61_]:: 9.1dt’

+ eofo’ezdt'}

where the nonlinear terms are written explicitly. In
Shotkin’s iterative scheme the nonlinear term

ete.,

ayelf: 014’ (8)
was included along with the terms
aybo [l 0:dt" and av6 [ bodt’

in his second iteration. In our scheme the term (8) is of a
different order as shown above. Since the last term of both
Egs. (3) and (4) arose from (8) this may explain why these
last terms are of different order compared to the others in
the second bracket of Egs. (3) and (4).

In our scheme, if the term (8) is excluded we obtain, to
order €?,

Qz_ _ _CsDy 2
(ﬂ) 1=CE-1E

) (9

Cs 2, G Ez 2 CsDs 3
E=E+=2E"+ 64[<>-]E-—-—32E ,
(10)

which are identical to Egs. (3) and {4), respectively, except
for the absence of the last terms. In this scheme the
E -equation [that is Eq. (9)] is found by adding successively
the coefficients of the sinmx mode from the right-hand side
of all iterations up to the highest order iteration at-
tempted and equating the sum to zero. This has its origin
in the same argument used by Shotkin that the ‘‘secular”
terms in the spatial mode expansion, that is terms in
sinrx in the right-hand side of Eq. (5) [or Eq. (6) since
€ = 1], must be zero. Since Eq. (6) is broken-up into the
different iteration equations, to obtain all secular terms up
to the highest order iteration attempted, we must sum all
these from the different iterations.

The values of E. obtained here are correct to four decimal places.

Table I shows the results calculated from Egs. (9) and
(10). We note that the percentage difference with the exact
values is not drastically different from those calculated
from Egs. (3) and (4). Equations (9) and (10) still consider
only the spatial modes up to sin 3nx in the iterations. In
our scheme if a third order iteration is attempted it may
be necessary to go up to sin 5rx mode and higher in all the
iterations.

H. Ibarra

Philippine Atomic Energy Commission
727 Herran
Manila, Philippines

July 24, 1969

Reply to Comments on the Iterative Approach to a

Space-Time Nonlinear Problem

In response to the above Letter of Ibarra,' there was a
numerical error on my part in Ref. 2, On examining my
notes, I found that in calculating the quantity Cs G1/64 in
Eq. (46) of Ref, 2, I had correctly written (0.16976)%/64
[72/(357)] for the individual elements in this term but had
somehow obtained 6.552 x 10™* instead of the correct value
2.948 X 10™%, On recalculation with this corrected value, I
obtain agreement with the results of Ibarra.! These are
shown in Table I, columns 2 and 3, These new values do not
change any of the conclusions of Ref, 2, The one change
that should be made (in addition to the corrections for the
first iteration) is that in the paragraph after Eq. (47), the
statement ‘“The results . . .are seen to be in good agree-
ment with the exact answers,’”” should now read, “The
results . , , are seen to be W1th1n 10% of the exact an-
swers,”

Although these percentage differences are an improve-
ment on those obtained using a modal expansion,® they are

'H. IBARRA, ‘““Comments on the Iterative Approach to a
Space-Time Nonlinear Problem,”’ Nucl. Sci. Eng., 89, 130 (1969).

%1,. M. SHOTKIN, Nucl. Sci. Eng., 86, 97 (1969).

33, CANOSA, Nucl. Sci. Eng., 33, 156 (1968),
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TABLE I

Space-Time Problem: Comparison of Analysis with Computer Results for the Energy at the Core Center,
Ec = 'Y.E;o (3, dt!

Exact - Approximate

Percent Difference = Exact X 100
Column Number 1 2 3 4 5 6 7
Percent Difference in Second-Order Iteration
First-Order
Exact Tteration: 0(E%) 0(EY 0(E%)
. Computation

(B/m (Ref. 3) Eq. (47) of Ref.v 2 | % Dif. | sin 37x, Eq. (4) | sin 5mx, Eq. (7) | sin 3mx, Eq. (8) | sin 5mx, Eq. (9)
1.2 0.235 0.235 0.00 0.00 0.00 0.00 0.00
2 1.162 1.162 0.00 +0.09 0.00 +0.09 0.00
3 2.297 2.296 +0.04 +0.44 +0.17 +0.31 +0.04
4 3.408 3.414 -0.18 +0.85 +0.41 +0.44 +0.03
7 6.640 6.814 -2.62 +2.59 +1.67 +0.84 -0.15
8 7.693 8.019 ~4.24 +3.01 +1.95 +0.97 -0.23

10 9.774 10.644 -8.91 +3.12 +1.80 +1.32 -0.31

not as good as originally advertised,? In trying to improve
the answers, Ibarra has used the perturbation method we
used [compare Eqs, (32) of Ref. 2 and Eq. (6) of Ref. 1] but
in introducing an additional restriction [Eq. (7) of Ref, 1]
he omits a small, but important, nonlinear term [Egq. (8) of
Ref. 1]. As Ibarra correctly shows in the last column of
his Table I, this omission gives poorer accuracy. The
power of the perturbation method used in Ref, 2 is that
higher-order terms in the time-dependent expansion can be
obtained exactly and with minimum effort at each order of
iteration, Thus, leaving some of them out should lead to
poorer accuracy, It is in the space-dependent expansion
that the major truncation-simplification is introduced. In
the problem studied the space series was truncated at the
sin 37x mode. At a given order of iteration, including
higher-order spatial modes in an exact fashion becomes
a somewhat more cumbersome procedure than including
higher-order terms in the time-dependent series.

It is a simple matter to improve the accuracy by going
ahead one more iteration; a route that was not followed in
Ref. 2 only because reasonable accuracies were incorrectly
calculated at the first iteration, In going to the second
iteration, we must solve for ¢; in the equation (see Ref. 2
for notation)

Ls¢s= L1 62 + N(¢2) (1)
where
¢2 = A sin 7x + B; sin 37x (2)
with
BAt) = - =

-
x {[.(B2 - 7%) Ma+ ayCs] A [ Adt + ayMs Dy Fy(1)
+ ay M can(t)}

Here
ay Cs .
(1-8)r
note that the factor of 72 was omitted in the misprinted M,
after Eq. (38) in Ref, 2,

M, =

Since Fa(#) is of O(E,), F, [ Fdtin N(¢;) will lead to
terms of O(E® in the second iteration—Eq, (1). As a first
approximation, let us compute the changes caused by the
second iteration only in those coefficients of E"terms that
occur in the first iteration, That is, only terms up to and
including E* in the expression for E,. In this way, Eqs. (46)
and (47) of Ref. 2 are changed to

BZ
(—) ~1-0.E-821 (1, AR 4 [934& (1+ 4)? +D1D3J

i 4
CsE®
fe (3)
BB+ S (tearatet - G20 (14 2088
CsDi  GC4d
+[ 1“443 + 5123 (1+34a+ A% E* (4
with
2
() -1
A= e— (5)

The percent difference from the exact solution computed
with these equations is shown in column 4 of Table I. The
accuracy when (B/7)? = 10 is improved from 8.91 to 3.12%,
Further improvement may be obtained at this order of
approximation by including the effect of the sin 57 x mode,
This can be done by adding the term

M, (1+-§3>sin5nfo Adt (6)
to the expression for ¢, in Eq. (2). This term comes from
including the sin 57 x mode in the ¢, solution® and comput-
ing terms of 0(A%) in ¢ (hence, the A/3 factor). One then
gets an additional term, (-Cs/24) (1 + A/3)E®, to add to

Eq. (4):

E.

- Cs (1, 2)g2
sin 57x _Ec IEq. (4)— 24 (1 + 3)E : (7)

The improved accuracies obtained using Eq. (7) are
shown in column 5 of Table I. As these solutions now give
accuracies comparable to those advertised in Ref, 2, we
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could stop here, However, it is a simple matter of multi-

plication and addition to include up to O(E®) terms in this

second iteration and improve the accuracy even further,
We thus obtain the expression for E, to 0(E®):

Cg GyD (3 )
E. = -3 _J33 (Y A ES
¢ C,[from Eq. (4)] 1024 \2°
GsCs’ [ C3Gq 2] 6 GZDyCy®
" 8192 [ 7 (1+8)+Ds" | E*+ Sgrarony £
3 4
s B - (8)

* 8(262, 144)

A similar expression is obtained for the right-hand side
of Eq. (3) up to 0(E"). The improved accuracies computed
by including these higher-order terms in the second itera-
tion are shown in column 6 of Table I, In column 7 we show
the accuracy if one includes the sin 57 x correction

- C5 [1 ';4£A( 3)] EZ . (9)

E.=E

¢ i l[fmm Eq. (8)]
Thus, reasonable accuracy can be obtained in the second

iteration for this problem.

Louis M. Shotkin

Brookhaven National Laboratory
Upton, New York 11973

August 13, 1969

Comments on Theoretical and Experimental
Criteria for Reactor Stability

Kalinowski® recently criticized the proof of a stability
criterion given by Gyftopoulos.? But neither the arguments
given by Kalinowski nor the reply by Gyftopoulos are
satisfying because the solutions of the corresponding
kinetic equations [Egs. (1) through (3) in Ref. 2] are
interpreted in a finite dimensional Euclidean state space.
Since these equations represent a system of functional-
differential equations, it is necessary to interprete the
solutions in an appropriate function space [in this case
C('°°9 0] ]'

Indeed Eqs. (1) through (3) of Ref. 2 are autonomous as
Gyftopoulos says. This is due to the fact that (cf., Ref. 3,
p. 764)

1= [ £t - Dp(Nar = [ f=-1)plt + r

p(t + 7), =0 < 7= 0, is a function in (-», 0] usually denoted
by the symbol p,. For any value of # the function p, belongs
to the space C(-w~, 0]. Therefore, the integral I can be
written as I = F(p,). If ¢ varies, then I changes its value
only if p, varies as an element of C(-, 0].

The Liapunov functional V used by Gyftopoulos [Eq. (17)
in Ref. 2], contrary to the statement of Kalinowski, is
positive definite without any assumption over the integrals,
if the given conditions on the parameters are fulfilled. If
the calculations relating to the step from Eq. (19) to
Eq. (20) of Ref. 2 were correct, then the time derivative of

1JOSEPH E. KALINOWSKI, Nucl. Sci. Eng., 34, 200 (1968).

2E, P, GYFTOPOULOS, Nucl. Sci. Eng., 26, 26 (1966),

3F., DI PASQUANTONIO and F. KAPPEL, Enevgia Nucleare,
15, 761 (1960).

V would be only negative semidefinite and not, as Gyfto-
poulos says, negative definite. In fact, V is zero for p(t) =
0 and c(#) (¢ =1, .., m) arbitrarily. But apart from the
correctness of Eq. (20), which will be discussed below, the
methodological foundation of the paper by Gyftopoulos is
wrong, because it is not possible to apply classical
theorems of Liapunov’s direct method to Egs. (1) through
(3) of Ref. 2, since these are functional-differential equa-
tions and not ordinary differential equations. In Ref. 3,
considering Eq. (20) as correct, it is shown that Gyfto-
poulos’ criterion can be proved applying an extension of
Liapunov’s direct method to functional-differential equa-
tions given by Hale (Ref. 4). Moreover, since Gyftopoulos
provides no proof for the domain of asymptotic stability
given in Ref. 2 [in fact the domain defined by the in-
equalities (23) is merely a domain where V is positive
definite], in Ref. 3 there is given a domain which is surely
contained in the domain of attraction relating to the power
equilibrium state.

Some correspondence following up the publication of the
paper quoted in Ref. 3 revealed an error in the step from
Egs. (A7) to (A9) in Ref. 2. Precisely, one has that from

|K (w1,w2) % = 4Re G(jw1)Re G(jwz) + CHwywz) (1)
does not follow
K{wy,ws) = 2[Re G(jw1)Reg(jwa)]"? + jC(wy,wa)

(2)
but more generally
(w1,w2) = 2[Re G(jwy)Re G(jw2)]"?a(w;,ws)
+ C(wy,wa)B(wy,ws) - (3)
a(wy,w,) and B(wy,w,) are complex numbers with |a} =8 = 1.

In other words, knowning |K(wiwz)[* one can not deter-
mine uniquely K{w;,ws,).

The incorrectness of Eq. (20) in Ref. 2 is confirmed by
the discussion of a particular case. For instance Gyfto-
poulos considers the case where b is very large. In fact,
considering, as Gyftopoulos says, only the last integral
term in V we have

V——fmai_'l_p({’r(‘r) P (ndrt (4)
and
v = Rxa Loy (5)
Now, if we have d® = @ and a, d > 1, then
-1<p(ty<d-1 (6)
implies
-1<pt)<a-1 . (7

Equations (5) and (7) prove that V is positive semidefinite,
because b, @, A are positive constants. But according to
Eq. (20) of Ref 2, V should be negative semidefinite !

It is mterestmg to mention that in the special case b = 0
the condition Re G(w) > 0 given by Gyftopoulos coincides
with the condition relating to the new stability criterion
given by the authors of this letter in Ref. 5, considering a
new Liapunov functional and applying an extension of the
stability theory given by Hale in Ref. 4. However the
coincidence of G(w) > 0 with the new criterion in the

4J. K. HALE, J. Diff. Egs., 1, 452 (1965).
5F. DI PASQUANTONIO and F. KAPPEL, to be published in
Energia Nucleare.



