
TABLE I 

Iterative Solutions vs Exact Solution* 

Ec = y/0°° <P(iO dt< 

Percent Difference = I Exact - Approximate I x 1QQ 

(8/71) 2 

Ec £c a Ech £cc 

(8/71) 2 Exact (Ref. 2) Value Percent Diff. Value Percent Diff. Value Percent Diff. 

1.2 0.235 0.2349 0.085 0.2349 0.2349 
2 1.162 1.166 0.172 1.1616 1.1622 
3 2.297 2.306 0.391 2.2960 2.3002 0.051 
4 3.408 3.395 0.381 3.4141 0.179 3.4276 0.575 
7 6.640 6.637 0.045 6.8136 2.614 6.9311 4.384 
8 7.693 7.720 0.376 8.0190 4.238 8.2224 6.881 

10 9.774 9.921 1.504 10.6446 8.906 11.2024 14.615 

*In Eq. (1) O! is taken as 272 as in Ref. 2. 
aTaken from Ref. 1 supposedly calculated from Eqs. (3) and (4). 
^Values obtained by us using Eqs. (3) and (4). The values of Ec obtained here are correct to four decimal places. 
cValues obtained from Eqs. (9) and (10). 

Lse3 = LT92 + ay \e2 £e0dt' + BiJ^Bidt' 

etc . , 

where the nonlinear t e r m s a r e writ ten explicitly. In 
Shotkin's i terat ive scheme the nonlinear t e rm 

a y e i f i e ^ t ' (8) 

was included along with the t e rms 

ayBofgOidt' and ay61J^Bodt' 

in his second i terat ion. In our scheme the t e rm (8) is of a 
d i f ferent o r d e r as shown above. Since the last t e rm of both 
Eqs . (3) and (4) a rose f r o m (8) this may explain why these 
las t t e r m s a r e of d i f ferent o rde r compared to the others in 
the second bracket of Eqs. (3) and (4). 

In our scheme, if the t e r m (8) is excluded we obtain, to 
o r d e r e2 , 

( j ) ' - 1 = C l E - C f ± E ° , (9) 

^ ^ T ^ i K f ) 2 - 1 ] * 2 - ^ 3 ' 
(10) 

which a re identical to Eqs. (3) and (4), respectively, except 
fo r the absence of the last t e r m s . In this scheme the 
E-equat ion [that is Eq. (9)] is found by adding successively 
the coefficients of the sinir* mode f r o m the right-hand side 
of all i terat ions up to the highest o rder i teration at-
tempted and equating the sum to zero . This has its origin 
in the same argument used by Shotkin that the " s e c u l a r " 
t e r m s in the spat ial mode expansion, that is t e rms in 
s inir* in the right-hand side of Eq. (5) [or Eq. (6) since 
e = 1], must be zero . Since Eq. (6) is broken-up into the 
d i f fe ren t i terat ion equations, to obtain all secular t e rms up 
to the highest o r d e r i teration attempted, we must sum all 
these f r o m the different i terat ions. 

Table I shows the resu l t s calculated f r o m Eqs. (9) and 
(10). We note that the percentage dif ference with the exact 
values is not drast ical ly di f ferent f r o m those calculated 
f r o m Eqs. (3) and (4). Equations (9) and (10) s t i l l consider 
only the spatial modes up to sin 3irx in the i terat ions. In 
our scheme if a third o rde r i teration is attempted it may 
be necessa ry to go up to sin 5irx mode and higher in all the 
i terat ions. 

H. Ibarra 

Philippine Atomic Energy Commission 
727 Herran 
Manila, Philippines 

July 24, 1969 

Reply to Comments on the Iterative Approach to a 

Space-Time Nonlinear Problem 

In response to the above Let ter of Iba r ra , 1 there was a 
numerical e r r o r on my par t in Ref. 2. On examining my 
notes, I found that in calculating the quantity C32 Gi /64 in 
Eq. (46) of Ref. 2, I had correc t ly writ ten (0.16976)2/64 
[72/(357r)] for the individual elements in this t e r m but had 
somehow obtained 6.552 x 10~4 instead of the co r r ec t value 
2.948 x 10"4. On recalculat ion with this cor rec ted value, I 
obtain agreement with the r e su l t s of Iba r ra . 1 These a r e 
shown in Table I, columns 2 and 3. These new values do not 
change any of the conclusions of Ref. 2. The one change 
that should be made (in addition to the correc t ions for the 
f i r s t iteration) is that in the paragraph a f te r Eq. (47), the 
statement "The resu l t s . . . a r e seen to be in good agree -
ment with the exact a n s w e r s , " should now read , "The 
resu l t s . . . a r e seen to be within 10% of the exact an-
s w e r s . " 

Although these percentage d i f ferences a r e an improve-
ment on those obtained using a modal expansion,3 they a r e 

1H. IBARRA, "Comments on the Iterative Approach to a 
Space-Time Nonlinear Problem," Nucl. Sci. Eng., 39, 130 (1969). 

2L. M. SHOTKIN, Nucl. Sci. Eng., 36, 97 (1969). 
3J. CANOSA, Nucl. Sci. Eng., 32, 156 (1968). 



TABLE I 

Space-Time Problem: Comparison of Analysis with Computer Results for the Energy at the Core Center, 

Ec = rJox f(ht') at' 

Percent Difference = Exac t—Approximate x 1 0 0 Exact 

Column Number 1 2 3 4 5 6 7 

§ 
to

 

Exact 
Computation 

(Ref. 3) 

First-Order 
Iteration: 0CE4) 

Percent Difference in Second-Order Iteration 

§ 
to

 

Exact 
Computation 

(Ref. 3) 

First-Order 
Iteration: 0CE4) 0(E4) 0 (E8) 

§ 
to

 

Exact 
Computation 

(Ref. 3) Eq. (47) of Ref. 2 % Dif. sin 3irx, Eq. (4) sin 5irx, Eq. (7) sin 3irx, Eq. (8) sin 57rx, Eq. (9) 

1.2 0.235 0.235 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 

2 1.162 1.162 0 . 0 0 +0.09 0 . 0 0 +0.09 0 . 0 0 

3 2.297 2.296 +0.04 +0.44 +0.17 +0.31 +0.04 
4 3.408 3.414 -0.18 +0.85 +0.41 +0.44 +0.03 
7 6.640 6.814 -2.62 +2.59 +1.67 +0.84 -0.15 
8 7.693 8.019 -4.24 +3.01 +1.95 +0.97 -0.23 

10 9.774 10.644 -8.91 +3.12 +1.80 +1.32 -0.31 

not as good as originally adver t i sed . In t rying to improve 
the answers , Iba r ra has used the perturbat ion method we 
used [compare Eqs. (32) of Ref. 2 and Eq. (6) of Ref. l ] but 
in introducing an additional res t r i c t ion [Eq. (7) of Ref. 1] 
he omits a smal l , but important , nonlinear t e r m [Eq. (8) of 
Ref. l ] . As Iba r ra cor rec t ly shows in the last column of 
his Table I, this omission gives poorer accuracy. The 
power of the per turbat ion method used in Ref. 2 is that 
h igher -o rder t e r m s in the t ime-dependent expansion can be 
obtained exactly and with minimum effor t at each order of 
i terat ion. Thus, leaving some of them out should lead to 
poorer accuracy . It i s in the space-dependent expansion 
that the ma jo r t runcat ion-simplif icat ion is introduced. In 
the problem studied the space s e r i e s was truncated at the 
sin 3ux mode. At a given order of i terat ion, including 
h igher -o rde r spat ial modes in an exact fashion becomes 
a somewhat more cumbersome procedure than including 
h igher -o rde r t e r m s in the t ime-dependent s e r i e s . 

It i s a s imple mat te r to improve the accuracy by going 
ahead one more i terat ion; a route that was not followed in 
Ref. 2 only because reasonable accurac ies were incorrect ly 
calculated at the f i r s t i terat ion. In going to the second 
i terat ion, we must solve for <j>3 in the equation (see Ref. 2 
for notation) 

where 

with 

B#) = 

Ls<j)3 = Lt <j>2 + N(<l>2) 

02 = A sin irx + B3 s in 3 irx 

(1) 

(2) 

1 
8ir2 

| [ - ( B 2 - IT2) M3 + ayC3]A f Adt + ayM3D3F,.{t) 

+ ayM3
2 C3F2(t)j . 

Here 

M3 
ay C3 

3 " ( 1 - 3 2 ) 5 7 2 ' 

note that the fac tor of n2 was omitted in the misprinted M„ 
a f t e r Eq. (38) in Ref. 2. 

Since F2{t) is of 0(E4), F2 f F2dt in N(<t,2) will lead to 
t e r m s of 0(E^ in the second iteration—Eq. (1). As a f i r s t 
approximation, let us compute the changes caused by the 
second i teration only in those coefficients of En t e r m s that 
occur in the f i r s t i terat ion. That i s , only t e r m s up to and 
including E4 in the expression for Ec. In this way, Eqs. (46) 
and (47) of Ref. 2 a r e changed to 

1 = C I £ -

C3E? 
16 

( 1 + A )E2 + C3Gx 1 + A) 2 + D I D 3 

£ C = E + ^ (1 + A + A2)E2 - ^ ( 1 + 2 A ) E 3 

C3D3 

144 512 (1 + 3A + A 2 ) £ 4 

with 

A EE (f j -

(3) 

(4) 

(5) 

The percent difference f rom the exact solution computed 
with these equations is shown in column 4 of Table I. The 
accuracy when (B/it)2 = 10 is improved f rom 8.91 to 3.12%. 
Fur ther improvement may be obtained at this order of 
approximation by including the effect of the sin 577 x mode. 
This can be done by adding the t e r m 

M s + j j sin 5 ir x A J Adt (6) 

This t e r m comes f rom 
2 

to the expression for <f>2 in Eq. (2). 
including the sin 5?r % mode in the <pi solution2 and comput-
ing t e r m s of 0(A2) in 02 (hence, the A/3 factor) . One then 
gets an additional t e r m , ( -C 5 /24) (1 + A / 3 ) £ 2 , to add to 
Eq. (4): 

= EC 
Eq. (4) 

£l 
24 K > (V) 

The improved accurac ies obtained using Eq. (7) a r e 
shown in column 5 of Table I. As these solutions now give 
accurac ies comparable to those advert ised in Ref. 2, we 



could stop he re . However, it is a simple mat ter of mult i -
plication and addition to include up to 0(£8) t e r m s in this 
second i terat ion and improve the accuracy even fu r the r . 

We thus obtain the expression for Ec to 0(£ a) : 

EC = EC 
G3D, 

I [from Eq. (4)] 

G3 c 3 

8192 
C 3G3 

1024 

(1 + A) + D2 E ' 
G3 D3 C3 
8(8192) 

G 3
3 C 3

4 

8(262, 144) 
(8) 

A s imi la r expression is obtained for the r ight-hand side 
of Eq. (3) up to 0 ( E 7 ) . The improved accurac ies computed 
by including these h igher -o rder t e r m s in the second i t e ra -
tion a r e shown in column 6 of Table I. In column 7 we show 
the accuracy if one includes the sin 5irx correct ion 

, C 5 f l + ( A / 3 ) ] £ 2 . 
I [from Eq. (8)] 24 

Thus, reasonable accuracy can be obtained in the second 
i terat ion for this problem. 

Louis M. Shotkin 

Brookhaven National Laboratory 
Upton, New York 11973 

August 13, 1969 

Comments on Theoretical and Experimental 
Criteria for Reactor Stability 

Kalinowski1 recently cr i t ic ized the proof of a stability 
c r i te r ion given by Gyftopoulos.2 But nei ther the arguments 
given by Kalinowski nor the reply by Gyftopoulos a r e 
sat isfying because the solutions of the corresponding 
kinetic equations [Eqs. (1) through (3) in Ref. 2] a r e 
in terpre ted in a finite dimensional Euclidean state space. 
Since these equations represen t a sys tem of functional-
d i f ferent ia l equations, it is necessary to in terprete the 
solutions in an appropriate function space [in this case 
C ( - ° ° , 0 ] ] . 

Indeed Eqs . (1) through (3) of Ref. 2 a re autonomous as 
Gyftopoulos says . This is due to the fact that (cf., Ref. 3, 
p. 764) 

I = l'XF(T - t)P(t)cIt = f_l/(-r)P(t + t)cIt . 

p(t + r), < r < 0, is a function in 0] usually denoted 
by the symbol pt. F o r any value of t the function p, belongs 
to the space C ( - ° ° , 0]. There fore , the integral I can be 
writ ten as I = F{pt). If t va r ies , then / changes its value 
only if p, va r ies as an element of C ( - ° ° , 0]. 

The Liapunov functional V used by Gyftopoulos [Eq. (17) 
in Ref. 2], contrary to the s ta tement of Kalinowski, is 
positive definite without any assumption over the integrals , 
if the given conditions on the pa rame te r s a re fulf i l led. If 
the calculations relat ing to the step f r o m Eq. (19) to 
Eq. (20) of Ref. 2 were co r rec t , then the time derivative of 

J O S E P H E. KALINOWSKI, Nucl. Sci. Eng., 34, 200 (1968). 
2E. P. GYFTOPOULOS, Nucl. Sci. Eng., 26, 26 (1966). 
3 F. DI PASQUANTONIO and F. KAPPEL, Energia Nucleare, 

15, 761 (1960). 

V would be only negative semidefini te p d not, as Gyfto-
poulos says , negative definite. In fact , V is ze ro fo r p(t) = 
0 and c,(i) (i = 1, . . , m) a rb i t r a r i ly . But apar t f r o m the 
co r rec tness of Eq. (20), which will be discussed below, the 
methodological foundation of the paper by Gyftopoulos is 
wrong, because it is not possible to apply c lass ica l 
theorems of Liapunov's d i rec t method to Eqs . (1) through 
(3) of Ref. 2, since these a r e funct ional-different ial equa-
tions and not ordinary different ial equations. In Ref. 3, 
considering Eq. (20) as cor rec t , it is shown that Gyfto-
poulos' c r i te r ion can be proved applying an extension of 
Liapunov's d i rec t method to funct ional-different ial equa-
tions given by Hale (Ref. 4). Moreover , since Gyftopoulos 
provides no proof f o r the domain of asymptotic stability 
given in Ref. 2 [in fact the domain defined by the in-
equalities (23) is merely a domain where V is positive 
definite], in Ref. 3 there is given a domain which is sure ly 
contained in the domain of at tract ion relat ing to the power 
equilibrium state . 

Some correspondence following up the publication of the 
paper quoted in Ref. 3 revealed an e r r o r in the step f r o m 
Eqs. (A7) to (A9) in Ref. 2. Prec ise ly , one has that f r o m 

|if(wi,w2)l2 = 4ReG(;wi)ReG(;a)2) +C2(wi,w2) (1) 

does not follow 

K{ui,o>2) = 2[Re G( ;wi )Reg-( jw 2 ) f ' 2 + jC(ui,w2) , 

(2) 
but more generally 

(w1;w2) = 2[Re GijujRe G( joj2)]1/2a(to1,a>2) 

+ C(W I , W 2 ) 0 ( W I , W 2 ) . ( 3 ) 

ff(O>I,W2) and |3(WI,W2) a r e complex numbers with |A| = IJ3| = 1. 

In other words, knowning |/f(wi,w2)|2 one can not d e t e r -
mine uniquely K(w i,w2). 

The incor rec tness of Eq. (20) in Ref. 2 is confirmed by 
the discussion of a par t icu la r case . F o r instance Gyfto-
poulos considers the case where b is very large . In fact, 
considering, as Gyftopoulos says, only the last integral 
t e r m in V we have 

y=bX f' a ^ p h ) k 2 { T ) d T (4) 

a 1 + P(t) 

and 

. b\ a - 1 - P(t)u2(t) 
V - a X 1 + Pit) * { t ) 

Now, if we have d2 = a and a, d > 1, then 

(5) 

-l<p(t)<d- 1 (6) 

implies 

-1 < p{t) < o - l . (7) 

Equations (5) and (7) prove that V is positive semidefinite, 
because b, a, X a r e positive constants . But according to 
Eq. (20) of Ref. 2, V should be negative semidef ini te! 

It is interest ing to mention that in the special case 6 = 0 
the condition Re G(w) > 0 given by Gyftopoulos coincides 
with the condition relat ing to the new stabili ty c r i te r ion 
given by the authors of this le t ter in Ref. 5, considering a 
new Liapunov functional and applying an extension of the 
stability theory given by Hale in Ref. 4. However the 
coincidence of G(a>) > 0 with the new cr i te r ion in the 

4J. K. HALE, J. D i f f . Eqs., 1, 452 (1965). 
5F. DI PASQUANTONIO and F. KAPPEL, to be published i 

Energia Nucleare. 


