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Letters to the Editors 

Decay Constant of a Neutron Pulse Inside a 
Finite Solid Moderator Assembly 

Recently, extensive theoretical work1"5 has been done on 
the decay of a neutron pulse inside a finite solid moderator 
assembly that has a direct bearing on the interpretation of 
results of pulsed-neutron experiments. According t o 
Corngold and others1-5 the discrete eigenvalues of the 
decay constant X, are limited by the inequality 

X ̂  (vZs)miR = Xlim, (1) 

where £ s is the macroscopic inelastic scattering cross 
section for neutrons of velocity v. The minimum value of 
vZs occurs for v-*Q, and for beryllium at room temperature 
it is nearly 4200 sec"1 (we will only consider beryllium 
here). As Corngold and Michael4point out, the experimental 
values of the lowest decay constant Xo, exceed this limit in 
many cases. This has lead to considerable confusion 
regarding the validity of the experimental results. As 
these authors put it, "If the experimental points are 
correct, they stand in direct contradiction to rather direct 
consequences of the Boltzmann equation . . . It is perhaps 
more reasonable to suppose that the measurements in 
crystalline moderators at large B 2 have a large uncertainty 
attached to them . . (Here B2 is the buckling for the 
assembly and for a cube of side L, B2 is very nearly equal 
to 3TT2/L2.) 

Corngold and Michael4 have further pointed out that the 
asymptotic flux should peak at v = 0 and not at the Bragg 
peak as suggested by Jha6 and de Saussure7. 

The purpose of this letter is to try to explain why the 
experimental values of X for large B2 come out to be larger 
than the mathematical bound Xlim. 

Let us consider the Boltzmann equation in the diffusion 
approximation (in the present case one may omit any 1/v 
absorption term without loss of generality): 
(-X + + i^Xtr B2) X(E) = vf XS(E'->E) X(E') dE', (2) 

where Xtr is the transport mean free path for neutrons of 
energy E, £ s (£'—»£) i s the scattering kernel for neutrons 
of energy ET being scattered into energy E, and X(E) dE is 
the flux of neutrons in the energy range E and E+dE. The 
other symbols have already been explained. 

The eigenfunction corresponding to the lowest discrete 
eigenvalue must be positive for all values of E and this 
leads to the inequality, 
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Since the minimum value of the expression on the right-
hand side of Eq. (3) occurs for v-*0 (for small v; 2S oc \ / v 
and Xtr oc v), we get the Corngold limit, Eq. (1), for the 
lowest eigenvalue of Eq. (2). 

It has been surmized that a possible reason for the 
observed X exceeding Xlim i s that the measurement of X is 
made without waiting for 'long enough' time4. We suggest 
that the observed values of X are the eigenvalues of a 
bounded equation, i .e. eigenvalues of Eq. (2) when it i s 
suitably bounded on the low-energy side. This suggestion 
is significant as the calculated values of X do not depend 
sensitively on the cutoff energy (provided it is not too close 
to zero). Physically it implies that during times relevant 
to an experimenter, the entire neutron-energy distribution, 
except for neutrons below the cutoff, remains in equilibrium 
and the distribution decays as a single exponential. 

To test the above idea we have solved Eq. (2) for a cutoff 
in energy at 10k (k is the Boltzmann constant). Moving the 
cutoff down to 5 or 6k does not alter the results appreci-
ably. We find that 1) a discrete eigenvalue and a proper 
eigenfunction exists for each B2 investigated (0 ^B2 ^ 0.07 
cm"2) and 2) the results for X agree remarkably well with 
the experimental results of Andrews8 (Fig. 1). (There is a 
large uncertainty8 in the experimental value of X for B2 = 
0.0746 cm"2.) 

One further finds that for large B 2 the calculated flux 
peaks in the energy range corresponding to the largest 
Bragg peak (for details see Goyal and Kothari9). This is 
expected since, if we neglect the 'zero-energy neutrons,' 
for a crystalline moderator the function (vEs + } v Xtr B2) 
will have a minimum at the largest Bragg peak and the 
neutrons will peak at this minimum. Instead of the 
Corngold limit, the physically much-more-significant limit 
set on X will be 

\ < ( v Z s + jz;Xtr B2)gQ = Xp (4) 

where E0 i s the energy corresponding to the largest value 
of S tr, which in the case of beryllium is 80k. As is seen 
from Fig. 1, all experimental points, except for the last 
point which is rather uncertain8, lie well below the line 
X = X*. 

It is interesting to note here that the decay constant for 
an assembly can also be deduced by averaging D(E) B2 = 
ivXtr(E)B2 over the equilibrium flux distribution for that 
assembly. Having calculated the equilibrium flux by solving 
by numerical interation the bounded Boltzmann equation, it 
is simple to average D(E) B2 over that distribution. The 
values of X so deduced agree, as expected, with the calcu-
lated eigenvalues for different assemblies. 
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Fig. 1. Curve A shows the calculated values of (X-2av) as a 
function of B2 for beryllium at room temperature. The broken line 
shows \ym whereas the full straight line gives XK. Circles are the 
experimental points of Andrews8. 

We would like to mention at the end that the eigenvalues 
of the complete Eq. (2) without the cutoff in energy will 
dominate only after long times but by then most of the 
neutrons would have leaked out. 

Details of this work are to be reported shortly. 
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Decay Constant of a Neutron Pulse 

ing result. It is not an explanation, because it rests upon 
the ad hoc notion that one should limit the range of neutron 
velocities. We are aware of no physical principle or 
experimental constraint that compels one to cut-off at ten 
degrees, or at five degrees, especially when the experiment 
is marked by a strong diffusion-cooling effect. If the 
physicist observes an exponential decrease characterized 
by X > X* = (vZ)min, the phenomenon must be understood 
through reasoning based upon the Boltzmann equation in the 
full domain of the velocity variable, v. 

It is not at all difficult to find a qualitative explanation 
for this phenomenon; indeed, Dr. Michael and I convinced 
ourselves of one in 1962, when we first discussed the 
bounds on the discrete X's. It is this: When the system is 
small enough, no discrete X's will exist, and the evolution 
of the pulse will be described in terms of a continuous 
spectrum of decay constants. Then, the amplitude, ^4(x), 
which is associated with the X's between X and X + dX, will 
play a particularly important role. >l(x) will reflect the 
scattering properties of the moderator; in the case of a 
coherent crystalline sample, it will show considerable 
oscillation, while it will vary smoothly when the moderator 
is an incoherent scatterer. Since a sharp peak (or valley) 
in ^4(x) at X = XP > X* produces an effect upon integration, 
rather like that of a discrete mode ~ exp(- XPt), one sees 
that such a pseudo-mode may well be found in a coherent 
scatterer. Further, we shall see that the value of X'P one 
obtains l ies close to that suggested earlier by deSaussure4 . 
Of course, XP, while it may dominate the decay of the pulse, 
is in no way connected with a fundamental or asymptotic 
mode. After a sufficiently long time, the portion of the 
continuous spectrum in the neighborhood of X* will dominate 
the decay. 

I can make the argument more quantitative by treating 
the leakage of neutrons by diffusion theory. (The diffusion 
approximation is hardly justified, but it yields the main 
features of the argument.) Then, for sufficiently large 
buckling, 

N(v,t) = dxe~* A(X, v). (1) 

One can show, now, that2 

A(X,v) = [ p ^ ^ ^ y +/(X) 6 (^-X)J gfrv), (2) 

where P denotes 'principalvalue,' / a n d ^ a r e 'smooth' in X, 
and 

vZ = vXStinei + vD(v)B2 (3) 

The response, R(t), of a 1/v detector to the pulse will 
be given by the integral of Eq. (1) with respect to v 
Equation (2) tel ls us that the result is 

f™ dvN{v,t) = dxe' •xt B ( x ) , / ( x ) g i M ( \ ) ) 

dv 
vZ 

v(X) J 

(4) 

In Eq. (4) ^(X) is the solution to vZ(v) = X, an equation 
assumed, for simplicity, to have only one solution. The 
quantity in square brackets is the amplitude, i4(X), men-
tioned above. Its fluctuating nature stems from the 
denominator of the second term. When coherent scattering 

Dr. Kothari1 has shown that if one uses a particular 
model for the scattering of neutrons by beryllium, and 
works with a cut-off scale of velocities, one will obtain the 
values of XQ(B2) measured by Andrews. This is an interest-
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