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where X = V/Vo and Vo = V2kT . 
Substituting Eq. (4) into Eq. (1) and with the ap­

priate expression for <as ( v)) yields 
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In Fig. 1 we plot the values of fl.(x) and ND(x) 
calculated from Eqs. (4) and (5), respectively, as­
suming a0 = 20.7 b. 

The Maxwellian average of the diffusion coeffi­
cient, defined as 
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is obtained from measurements of the diffusion 
properties of thermal neutrons. 

From Eqs. (5) and (6) the expression for N (n) 
of a free proton gas is 
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N D = 3a0 lo S(x) dx = 3a0 G. (7) 

Numerical calculations yield 0.656 as the value 
of G. 

We calculated the values of <n) from Eq. (7) 
for H20, CaHe and C12H1o at T = 300°K. From the 
comparison with the values calculated by theoreti­
cal models8 • 7• 10, which account for the chemical 
binding, and with experimental results6 • 8•9• 10• 11 , we 
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Fig. 1. Diffusion coefficient and average cosine of 
the scattering angle of neutrons for a free proton gas. 

can conclude that using the free-proton gas model 
overestimates the diffusion coefficient for H20 and 
hydrocarbons by a factor of 2 to 3. We neglect 
oxygen and carbon contributions. 
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An Approximate Solution of the 

Two-Overlapping-Thermal-Group 

Diffusion Equations* 

The use of two overlapping thermal groups to 
represent the spatially dependent thermal-neutron 
spectrum has been considered by several investi­
gators1-3. The purpose of this letter is to describe 

*Work performed under the auspices of the USAEC. 

'D. S. SELENGUT, "Variational Analysis of Multi­
Dimensional Systems," HW- 59126, p. 89 (1950). 

2 G. P. CALAME and F. D. FEDERIGHI, Nucl. Sci. Eng. 
10, 190 (1961). 

'A. J. BUSLIK, "The Description of the Thermal 
Neutron Spatially Dependent Spectrum by Means of Varia­
tional Principles," WAPD-BT-25, 1 (May 1962). 
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an approximate solution of one of the formulations. 
The approximation allows retention of the iteration 
strategy presently used in computer programs that 
solve the multidimensional few-group diffusion-
theory equations. 

The two-overlapping-thermal-group method as-
sumes that the energy-dependent thermal flux can 
be represented as a linear combination of two 
predetermined trial spectra, i.e. 

<t>(E,r)= ^ ( E ) x 1 ( r ) + ^ 2 ( £ ) x 2 ( r ) , (1) 

where both xp^E) and ty2(E) are defined over the 
entire thermal-neutron energy range. Substitufion 
of Eq. (1) into the energy-dependent thermal-
neutron diffusion equation, operating on the result-

f E ing equation in turn with / c fx(E)dE and 
JQ 
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E 

c f9(E)dE results in two equations in xAr) 
and X2(r) which may be written as 
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(2a) 

- D2IV2 Xx(r) - D22V2X 2(r) + S21 Xi(r) + S22 x2(r) = S2(r). 

(2b) 
The subscripts ij in Eqs. (2) reflect the combina-
tion of weighting functions fj(E) with trial function 

Equations (2) include both up- and down-coup-
ling. Large scale two-dimensional few-group 
digital computer programs (like the PDQ series) 
take advantage of the fact that the conventional 
few-group equations are coupled only through down 
scattering and the fission source. The addition of 
up-coupling as exists in Eqs. (2) requires changes 
in iteration strategy and usually results in a large 
increase in the solution times. 

An opportunity for further simplification of Eqs. 
(2) arises with the choice of trial and weight func-
tions. The technique used by most investigators 
is to assume trial spectra that are both at least 
as soft and as hard as that expected in the reactor 
configuration of interest. This approach has been 
quite successful. Available weighting functions 
differ in the details but have the following general 
characteristics: 

fi(E) is a constant (this choice assures neu-
tron balance), 

f2(E) increases with energy. 
While the details do differ somewhat, little basis 
exists for choosing one method over the other in 
terms of obtaining an accurate representation of 
the spatially dependent spectrum. 

In Buslik's formulation of the problem3, the 
scattering kernel is symmetrized in order to allow 

the use of a variational principle for self-adjoint 
operators. With the Maxwellian distribution ;//M (E) 
chosen as one of the trial functions, the functions 
f x { E ) = 1 and f 2 ( E ) = \pH(E)/\{/M(E) a r e ob ta ined 
as weighting functions. (Here ^H(F) is the hard-
ened trial spectrum assumed for \^2(E).) This 
choice results in the coefficients D22, S22, and 
S2 in Eq. (2b) being orders of magnitude larger 
than the coefficients D21 and S2 i , e.g. by a fac-
tor of 106 at 68°F (20°C) and by 102 at 535°F 
(279°C). This condition suggests that it may be 
possible to neglect the D21, £21 terms in Eq. (2b) 
altogether. Then, if Eq. (2b) (without the D2I and 
£21 terms) is solved first, no uncoupling is re-
quired for the solution of the two-overlapping-
group equations. 

A comparison of Eqs. (2) with and without the 
D2I and Z2i terms present yields three condi-
tions to be satisfied for the approximation to yield 
an accurate solution, 

s 1 2 s 2 1 < < 1 ; ! « | L (3) 
Z/llO; 1W2 DND22 

Several comparisons have been made between 
solutions of Eqs. (2) with the D21 and S 21 terms 
present and not present. The M0176 (Ref. 4) com-
puter program was used in the slab geometry for 
this purpose. Comparisons were made of X^x), 
X2W, and the activation rate J4 = IUXIM + Si2X2W. 
The basic problem was a two-region cell (Table I). 
The slowing-in source was set proportional to the 
hydrogen density of the region, and the hardened 
trial spectrum for the basic problem was taken to 
be that of region 2. The maximum errors in acti-
vation rates at room temperature were less than 
0.06% for all cases, except for one in which the 
slowing-down source was deleted from the fuel-

TABLE 1 
A Two-Region Cell 

Region 1 (H20) Region 2 
(Fuel-Bearing Region) 

NH = 0.5406X 10"1 (b cm)"1 

N0 = 0.2553X10"1 

Half-thickness = 10 cm 

NN = 0.3004 x 10"1 (b cm)"1 

N0 = 0.24106X10"1 

NZT = 0.10706 X 10"1 

N235 = 0.92358X 10"3 

N2 as = 0.69517X 10~4 

Half-thickness = 10 cm 

4R.M. CANTWELL, "M0176 - A FORTRAN Program to 
Solve Several P-Approximations to the Few-Group Neutron 
Transport Equation in Slab Geometry," WAPD-TM-320 
(April 1962). 



394 LETTERS TO THE EDITORS 394 

bearing region. The larger percentage error 
occurred at the edge of the cell, where the activa-
tion level was 10"4 less than at the fuel-water 
interface and is, consequently, insignificant. 

Because of the decrease in the ratio of \pH(E)/ 
\pM (E) at high energies, the error observed when 
D2I and £21 were omitted at 535°F (279°C) was 
larger than at 68°F (20°C). However, in all cases, 
hot or cold, the error was less than 0.1%. The 
approximation was also applied successfully to a 
problem containing a heavy absorber treated with 
blackness theory. 

The success of the approximation described 
above allows the conventional iteration strategy of 

the few-group diffusion-theory programs to be re-
tained. As a result, the cost of using this approxi-
mation to the two overlapping groups in place of a 
single thermal group is essentially that of adding 
one conventional group to a few-group representa-
tion. 
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