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mation. The IR integral for this case is 3.65 b. 
A numerical integration of the equations gives 3.76 
b, so that in comparison, the IR result has a 2.9% 
error. On the other hand, the NR-WR result is 
4.02 b, which has a 6.9% error. 

For heavier moderators the e r rors are even 
more significant. For a carbon-uranium mixture 
such that vm = 20.2, the solution to Eqs. (9) for 
this resonance is (k,X) = (0.427, 0.0042). Here 
the moderator NR approximation is clearly no 
longer applicable and the NR-WR approximation 
has a 56% error, whereas the IR result agrees to 
within 1.9% of the numerical result. These results 
are summarized in Table I. 

tional approximations. In particular, the modera-
tor outside the lump is necessarily treated in an 
NR approximation. An appropriate example would 
be U02 fuel rods in water. Here, om would be 
the scattering cross section of the oxygen, treated 
in an IR approximation, while 5 represents the 
water scattering, as treated in an NR approxima-
tion. 
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TABLE I 

Resonance Integrals (in barns) for the 6.68 eV 
Resonance of U238 (on + op = 30.2) 

Moderator NR-WR IR Numerical 

Hydrogen 

Carbon 

4.02 

4.02 

3.65 

2.63 

3.76 

2.58 

It is clear, therefore, that the NR approxima-
tion is not always applicable to the moderator. 
It is particularly bad for the lower energy reso-
nances and the heavier moderating elements. For 
the higher energy resonances the error of the 
moderator NR approximation is less significant. 
Furthermore, as the moderator concentration in-
creases, the error decreases because the flux 
depression in the resonance decreases and the 
resonance integral becomes less sensitive to the 
various approximations. In all cases, however, it 
is not difficult to solve the appropriate IR equa-
tions (9a,b) and obtain the corresponding resonance 
integral (5) for any resonance and any mixture. 

The extension to nonhomogeneous systems may 
be made by representing the lump by an effective 
scattering cross section s. As in Ref. 5, s is 
given in terms of the lattice characteristics C 
and 1 by 

5 = • 1 

Nil 
(10) 

All of the results in this paper now apply, with the 
only change being that /3kA is given by 

= 1 + S + K(7m + MIfy 
T y + 

(11) 
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On Transfer Cross Sections Between 
Overlapping Thermal Groups 

In a system of moderators at different temper-
atures, neutrons which have been thermalized in 
one medium may diffuse into another, where they 
may suffer collisions and eventually enter the 
energy-distribution characteristic of this medium. 
The rate of transfer of neutrons from the first 
distribution into the second is characterized by 
the so-called ' t ransfer ' or 'rethermalization' 
cross sections. This process of rethermalization 
has been investigated by several authors1 7 in dif-
ferent ways. 

The present note intends to demonstrate the 
connection between the results of the mentioned 
authors, by investigating concisely the case of two 
purely scattering moderators at different temper-
atures (Kottwitz's problem). 

We assume that the thermal flux in the system 
can be approximated by a superposition of two ap-
propriate energy distributions 0/ (£) (i = 1,2) 
weighted by spatially dependent factors: 

i-l 
( 1 ) 

The am in Eq. (11) now applies to any moderator 
which may be admixed with the fuel. 

We have used the equivalence expressed by Eq. 
(10) in order to keep our results simple, but its 
use for nonhomogeneous systems introduces addi-
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It is well-known that in a general way the ampli­
tudes F; (r) can be determined by rendering sta­
tionary a functional. In the diffusion approxima­
tion the resulting system of partial differential 
equations for the F; (r) is: 

"i:.{-vn;;\7+ [I:a1;; -H;;}F;(r) =S;(r) (2) 
i=l (j = 1,2) 

where 

A;; = f dE l/1; (E) A (r,E) ¢;(E) 

S; = f dE l/1; (E) S (r,E) 

S (r,E) = source distribution at a point r 

D (r,E) = diffusion coefficient at a point r 

L: 0 (r, E) = macroscopic absorption cross 
section at a point r 

Hcp(E) = jdE 'L:s (r,E '->E) cp(E~-L:s (r,E) cp(E) 

"Es(r,E'->E) =angle integrated macroscopic 
differential cross section for 
the energy change E' -> E 

I: 5 (r,E) = jdE'"Es (r,E ->E') =total scat­
tering cross section. 

The l/1; (E) are the adjoint energy distributions 
occurring in the approximation 

2 

w(r,E) = :E G; (r) l/1; (E) (3) 
i= 1 

of the adjoint flux in analogy with Eq. ( 1). 
By operating on Eq. (2) with the inverse of the 

matrix 

I;; = f l/1; (E) ¢;(E) dE (4) 

(which exists if all the energy components C/J;, l/1; 
are linearly independent), it is straightforward to 
derive equations in the multigroup form: 

-\7 D(r )\7F; (r) +I:;; F; (r) = I:;; F; (r) + S; (r) (5) 

(i fj;j=1,2) 

(D( r, E) is assumed here as energy independent) 
and to identify the coefficients which act in the 
formalism as transfer cross sections: 

2 

"E;; =- :E /~1 [I:a - H]ki ' (6a) 
k =1 

expressing the transfer of neutrons from group i 
into group j, and 

2 

I:;; = L 1;;
1 

[I:a - H]kj , (6b) 
k =1 

expressing the 'effective absorption' in group j. 

The distributions rb;( E), l/1; (E) entering Eqs. 
( 1) and (3) are chosen in a general way as the 
direct and adjoint asymptotic spectra (infinite 
medium spectra) of the two regions. 

The case of two purely scattering moderators 
is a degenerate one for the outlined formalism, in 
the sense that being 

¢;(E)= ~2 exp (- ~)=- M(E,T;); (i=1,2) 

l/1; (E) = const (j=1,2) 

the formalism itself is not able to determine the 
coefficients ( 6). Therefore we are led to take into 
account the higher modes of the thermalization 
operator, and this can be made as follows: 

we assume for the nonequilibrium distribution 
(j) in region (i ) 

l/I;(E) = 1 +P(E), (7) 

being again l/I;(E) = 1. For convenience l/1; and l/1; 
are normalized to unity with respect to M(E, T;), 
consequently 

jp(E) M(E,T;) dE= 0. 

The transfer cross sections (6a,b) 
(i) then can be written 

jp(E) H(i) M(E,T;) dE 
I:~j) 

jp(E) M(E,T;) dE 
11 

(8) 

for region 

(9a) 

(9b) 

expressing the fact that the equilibrium group (i) 
can only gain but not lose neutrons. 

We try to determine p( E) by introducing Eq. (7) 
into the adjoint basic equation written down for the 
region (i): 

-\7 D{il \7 w<il (r,E) - H*(i) w<il(r,E) = 0 (10) 

where H* is the adjoint thermalization operator 
defined by the relation 

(cp,H*tJ;) = (l/I,H¢) = jdE l/I(E) Hcp(E) (11) 

for arbitrary cfJ, l/1. Equation ( 10) splits up by 
separation into the following: 

\7 2 [G; (r) + G; (r)] = 0 (lOa) 

nUl \7 2 
G; (r) = 11 G; (r) (lOb) 

H*U> p(E) = -tJ.P(E). (lOc) 

According to (lOb) the inverse of the eigenvalue 
11 of the adjoint thermalization operator is a meas­
ure for the relaxation of the importance of group 
(j) decaying in region (i). Since in general the 
relaxation length connected with the first eigen-
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value jUi is prevailing, it is justified to introduce in 
(9a) the f irst mode/>i(£) of the adjoint thermali-
zation operator. Observing relation (11) we get 

tf . (12) 

Eq. (12) corresponds to Leslie's result3. The 
results of Selengut1 and Lindenmeier2 are obtained 
by a linear approximation to p(E) satisfying Eq. 
(8), 

P(E)~ (2 T{ - E). (13) 

This approximation guarantees both the balance of 
neutrons and of energy. Moreover the two ap-
proaches will agree for higher mass values since 
(13) is exactly the f i rs t mode of the adjoint heavy-
gas operator. 

Expression (9a) becomes now 

fdE JdEr (Er—E) E(s° (E~*Ef) M(E,Tj) 
Zij = 2(Ti - Tj) (14) 

which can be evaluated analytically for the free 
gas scattering kernel (mass ratio A, f ree atom 
macroscopic scattering cross section S0) yielding 

</> 2A (0 / J ± \ 1 /2 

~(A+l)2 \ 1 + A T f ) ' (15) 

Pearce4 has obtained the same formula (15) from 
a gas-kinetic point of view. 

H. Hembd 

ical binding (for example, see Ref. 1). In this way, 
it is possible to have a quantitative insight into the 
effect of the chemical binding on these values. 

Following this line we obtain here an analytical 
expression for the diffusion coefficient of thermal 
neutrons for a gas of free protons that are in 
motion with a Maxwellian distribution of velocities. 
The diffusion coefficient for nonabsorbing media is 
defined in general as 

D(v) = - ^ , (1) 
3N (as(v)) [ 1 - niv)] 

where N is the atomic density of the considered 
medium and (crsU0) and n(v) are the micro-
scopic scattering cross section and the average 
cosine of the scattering angle in the laboratory 
system (l.s.), respectively, which are functions of 
the neutron velocity, v. 

As far as the scattering cross section is con-
cerned, we use in Eq. (1) the analytical expression 
of (crs(iO) given in Refs. 2 and 3. 

For the average cosine of the scattering angle 
in the l.s., ji(v), we proceed as follows. Under 
the hypothesis that the scattering cross section 
a0(v r) is independent of the relative velocity vT 
of the two colliding particles3 and the scattering is 
isotropic in the center of mass system, we may 
define 

„ < „ , . (2) 

where 
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((Js(v)cosn(v)) 

= Oo r2ir dj) r+1 /cosg\ / •+! , / cosq \ 
v Jo 2 t tJ-! a \ 2 jJ-x a \ 2 ) 

J fOO 
[ vrcosqMTQitAdV. (3) 

The notations used in Eq. (3) are those indicated in 
Ref. 4, pp 101 and 397. Performing the integration 
appearing on the right-hand side of Eq. (3), one 
obtains5 for a free proton gas 

Diffusion Coefficient of Thermal 
Neutrons for a Maxwellian Gas 

The experimental values of the spectra and dif-
fusion parameters of thermal neutrons are usually 
compared with those calculated on the basis of the 
free-gas model and on the basis of more realistic 
models, which account for the effects of the chem-
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