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fission products with a scintillation counter1'2; 
another uses a fission counter to detect fission 
fragments directly3. The latter technique is usual-
ly difficult to use because of the physical size of 
the fission counter. Recently, Bigham3 suggested 
that in the gamma-counting technique, differences 
in thermal and epithermal fission yields would not 
show up as differences in decay rate if these 
fission products were short-lived or detected with 
only low efficiency. To investigate this problem, 

o o c n OQ 

an experimental study of the U and U fission 
cadmium ratios has been carried out, using both 
of the methods outlined above. 

The experiment was performed using pairs of 
highly enriched U235 (or U233) deposits in a double 
chamber back-to-back fission counter4. Highly 
enriched U235 (or U233) foils were sandwiched be-
tween the deposits. This type of counter was used 
to ensure that the effect due to any flux gradients 
would be eliminated. Subsequent analysis of the 
data indicated that this precaution was not neces-
sary. The deposits were 0.1-mg/cm2 and 0.01-
mg/cm2 thick for U235 and U233, respectively, 
yielding plateaus having a slope of 0.2%/V over a 
50-V range. The 0.005-in. (0.013 cm) foils were 
made from a 2.5 wt% uranium-aluminum alloy 
enriched to greater than 90% U235 (or U233). The 
self-shielding of these foils was less than 1%. 

The irradiation (30 min) was done with the 
fission counter bare, and repeated with the counter 
cadmium-covered. The same deposits and foils 
were used in each set of irradiations to eliminate 
the need for foil and deposit intercalibrations. 
Special precautions were taken to ensure that the 
counter was completely covered to eliminate 
thermal-neutron streaming paths. This was nec-
essary since the cadmium ratio was approxi-
mately 40. The cadmium ratios were determined 
in two ways for each set of bare and cadmium-
covered irradiations. In one, the total fissions 
from the deposits were recorded during the 
irradiation; in the other, after the irradiation the 
fission-product activities of the foils were counted 
on a 2-in. (5.1 cm) Nal scintillation counter biased 
to reject pulses below 400 keV. The U235 foils 
were counted between 50 to 100 min after the end 
of the irradiation, and the U233 foils were counted 
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in the interval 30 to 90 min after irradiation. 
These time intervals are similar to those used in 
resonance integral determinations1. A Cs137 stand-
ard was used to monitor any drift in the scintilla-
tion counter. 

Eight sets of cadmium-ratio determinations 
were obtained for U235 and four sets for U233. 
Corrections were made for counting losses (less 
than 0.7%), foil self-shielding (less than 0.6%), and 
for power level drift during the irradiation (less 
than 1%). 

The ratio of the cadmium ratios determined by 
fission counting to those determined by gamma 
counting yielded a value of 1.005 ± 0.007 for U235 

and a value of 1.002 ± 0.005 for U233. These values 
support the use of the fission-product gamma-
counting method in the measurement of U235 and 
U233 cadmium ratios, and also establish the validity 
of this technique as applied to determinations of 
these fissile infinite dilution resonance integrals. 
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Intermediate Resonance Absorption 
at Low Energies 

Is moderator scattering adequately treated in a 
narrow resonance (NR) approximation for low-
energy resonances? For cases in which light 
moderating elements are admixed with the fuel, 
this may be a particularly important question. 
Recent work1'2'3 indicates that the NR approxima-
tion may not always be applicable to the modera-
tor. The first two references treat this problem 
for resonance absorption in nonhomogeneous sys-
tems; the third concentrates on an examination of 
the flux shape. 

We consider a simple extension of the 'inter-
mediate resonance' (IR) formulation4 of the prob-
lem for homogeneous systems. The extension to 
nonhomogeneous systems may be made by means 
of equivalence principles5. 
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Consider the basic equation for a spatially 
independent homogeneous mixture of a nonabsorb­
ing moderator and a resonance absorber: 

The notation is consistent with that of Ref. 4, ex­
cept that am is the moderator scattering per 
absorber atom. The flux is normalized to unity 
far above the resonance; 1/i(u)~l. K is the 

u ~-co 

slowing-down integral operator for the absorber, 

f.
u e-(u·u') 

K= du' ---
u- L1 1 - a ' 

1 
A =ln a, (2) 

and K m is the corresponding operator for the 
moderator. In Ref. 4 the term Kmam 1/1 was re­
placed by am , the result of applying the NR 
approximation to the moderator. This restriction 
is now being removed. 

A first-order solution to Eq. (1) may be written 
as 

where 

fy+-'Tn 

r 

(3) 

(4) 

Here K is the IR parameter for the moderator 
and A is the corresponding quantity for the ab­
sorber. Thus, for example, with ( K,A) = (1,0 ), 
Eq. (3) gives the first-order NR-WR (or NRIA) 
solution to Eq. (1). This means that the NR ap­
proximation has been applied to the moderator, 
while the wide resonance {WR) approximation has 
been applied to the absorber. 

As in Ref. 4, first-order resonance integrals 
are given directly in terms of the quantity 8KA : 

I (1) = I(o) 
Kh {3 Kh • 

(5) 

By setting K or A equal to zero or unity, one ob­
tains various combinations of first-order results. 

In the intermediate resonance approach, we 
calculate second-order resonance integrals by 
iterating the first-order solution (3) in the basic 
equation (1), and then equate successive orders of 
approximation as a means of solving for the par­
ameters K and A. In evaluating the second-order 
resonance integrals, we also make use of the ap­
proximate form of the slowing-down operator, 

K =! r;x+li dx' · 
0 Jx ' 

o = 2E, (1- a)/r . (6) 

Note that this approximation to K, whieh enables 
us to get simple analytical results, also preserves 

the property of the exact K, that when it operates 
on a constant it gives back the constant (K · 1 = 1). 

Setting /~2~ = /~1~ yields the following relation: 

(7) 

where 

B 
X A = , (8) 

K f3u + {3Kh 

and x;j is the same as X KA except that B is 

replaced by 

2E,(1- am) 
Bm = r , for the moderator. 

Since Eq. (7) involves two parameters, an addi­
tional condition is necessary in order to obtain an 
an explicit solution. However, to keep our results 
simple, we choose to make some physical argu­
ments and use some results of Ref. 4. In the NR 
limit with respect to the absorber, x KA > > 1 and 
the absorber parameter A goes to unity. In this 
limit, therefore, the right-hand side of Eq. (7) van­
ishes, and hence, for this equation to be satisfied 
we require that 1- x~m{ - K = 0. Similarly, in the 

absorber WR limit, x KA < < 1 and A---+ 0. This 

means that for Eq. (7) to be satisfied, 1 - x<mJ -
K = 0. KO 

We stipulate, now, for all values of A, that the 
moderator square bracket vanish: 

(m) 
1 -X Kh - K = 0. (9a) 

But for Eq. (7) to be satisfied for all ,\, we also 
need 

1 - XKA - A= 0. (9b) 

The pair of coupled transcendental equations 
{9a,b) form an explicit solution for the parameters 
K and A in terms of the resonance parameters. 
The equations may be solved numerically by itera­
tion. When the solutions for K and A are in­
serted into Eq. (5), one has the IR approximation 
to the resonance integral. 

For example, consider the 6.68 eV resonance of 
U238 for a 1:1 atomic mixture of hydrogen and 
uranium (am = 20.2, ap = 10). Starting with (K,A) 
= ( 1,0), which is the standard NR-WR or NRIA 
approximation for this resonance, one obtains after 
only two iterations (K ,A) = (0.821, 0.0062) as the 
solution to Eqs. {9). The values of the parameters 
indicate that the absorber WR approximation is 
more applicable than the moderator NR approxi-
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mation. The IR integral for this case is 3.65 b. 
A numerical integration of the equations gives 3.76 
b, so that in comparison, the IR result has a 2.9% 
error. On the other hand, the NR-WR result is 
4.02 b, which has a 6.9% error. 

For heavier moderators the e r rors are even 
more significant. For a carbon-uranium mixture 
such that vm = 20.2, the solution to Eqs. (9) for 
this resonance is (k,X) = (0.427, 0.0042). Here 
the moderator NR approximation is clearly no 
longer applicable and the NR-WR approximation 
has a 56% error, whereas the IR result agrees to 
within 1.9% of the numerical result. These results 
are summarized in Table I. 

tional approximations. In particular, the modera-
tor outside the lump is necessarily treated in an 
NR approximation. An appropriate example would 
be U02 fuel rods in water. Here, om would be 
the scattering cross section of the oxygen, treated 
in an IR approximation, while 5 represents the 
water scattering, as treated in an NR approxima-
tion. 
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TABLE I 

Resonance Integrals (in barns) for the 6.68 eV 
Resonance of U238 (on + op = 30.2) 

Moderator NR-WR IR Numerical 

Hydrogen 

Carbon 

4.02 

4.02 

3.65 

2.63 

3.76 

2.58 

It is clear, therefore, that the NR approxima-
tion is not always applicable to the moderator. 
It is particularly bad for the lower energy reso-
nances and the heavier moderating elements. For 
the higher energy resonances the error of the 
moderator NR approximation is less significant. 
Furthermore, as the moderator concentration in-
creases, the error decreases because the flux 
depression in the resonance decreases and the 
resonance integral becomes less sensitive to the 
various approximations. In all cases, however, it 
is not difficult to solve the appropriate IR equa-
tions (9a,b) and obtain the corresponding resonance 
integral (5) for any resonance and any mixture. 

The extension to nonhomogeneous systems may 
be made by representing the lump by an effective 
scattering cross section s. As in Ref. 5, s is 
given in terms of the lattice characteristics C 
and 1 by 

5 = • 1 

Nil 
(10) 

All of the results in this paper now apply, with the 
only change being that /3kA is given by 

= 1 + S + K(7m + MIfy 
T y + 

(11) 
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On Transfer Cross Sections Between 
Overlapping Thermal Groups 

In a system of moderators at different temper-
atures, neutrons which have been thermalized in 
one medium may diffuse into another, where they 
may suffer collisions and eventually enter the 
energy-distribution characteristic of this medium. 
The rate of transfer of neutrons from the first 
distribution into the second is characterized by 
the so-called ' t ransfer ' or 'rethermalization' 
cross sections. This process of rethermalization 
has been investigated by several authors1 7 in dif-
ferent ways. 

The present note intends to demonstrate the 
connection between the results of the mentioned 
authors, by investigating concisely the case of two 
purely scattering moderators at different temper-
atures (Kottwitz's problem). 

We assume that the thermal flux in the system 
can be approximated by a superposition of two ap-
propriate energy distributions 0/ (£) (i = 1,2) 
weighted by spatially dependent factors: 

i-l 
( 1 ) 

The am in Eq. (11) now applies to any moderator 
which may be admixed with the fuel. 

We have used the equivalence expressed by Eq. 
(10) in order to keep our results simple, but its 
use for nonhomogeneous systems introduces addi-
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