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Letters to the Editors 

Perturbation Theory of Control Rods 

Wolfe and Fischer1 show that the change in v, the 
number of neutrons per fission required for criticality, to 
maintain criticality upon insertion of control rods is given 
by 

_ _ f(j)24 DVn ds 

f<j>l+ V 2/ 02' dv 
(1) 

within the limitations of two-group diffusion theory. Epi-
thermal fission and epithermal capture of neutrons by the 
rod are neglected, and the perturbed thermal flux, 02', is 
assumed to be zero at the control rod surface; 01+ and 02+ 

are the adjoint fluxes in the unperturbed reactor. 
The numerator of Eq. (1) represents the net flow of 

neutron importance into the control-rod surface s. The 
denominator is the total production of neutron importance. 

In two-group diffusion theory, 02' can be found by 
solving 
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together with the boundary conditions that the thermal flux 
and the gradient of the fast flux are zero at the control-rod 
surface. In addition, both 0/ and 02' should be zero at the 
reactor-extrapolated outer boundary. 

In their first-order theory, Wolfe and Fischer assume 
the fast flux to be unperturbed on insertion of the control 
rods. The first-order estimate of the perturbed thermal 
flux, 02(1), is then found by substituting the unperturbed 
fast flux, 0i(O), in the right-hand side of Eq. (3) and by 
solving this equation together with the boundary condition 
of zero thermal flux at the control-rod surface. 6i/1} is 
then found by making the approximation 02' = 02(1) in 
Eq. (1). 

In a second paper2, Wolfe and Fischer find the second-
order perturbed thermal flux 02(2> by substituting 02(1> in 
the right-hand side of Eq. (2), solving this equation for 
0! (1), substituting 0i (1) in the right-hand side of Eq. (3), and 
solving this equation for 02(2>; 6z/2) is then found by making 
the approximation 02' = 02(2) in Eq. (1). 

If Cin) is defined by 

/ DV„ dS = 2<0,(i?)C (n ) (4) 

where 02(0) (R) is the average unperturbed thermal flux 
around the control-rod surface, then the approximation 
02' = 02(w) in Eq. (1) gives 

6v ™ = 0 2 + ( # ) Z , 2 02 (o ) (R)Cin) 

f(j) 1+ 1/Zf (i>2{n) dv 
(5) 

1B. WOLFE and D. L. FISCHER, Nucl. Sci. Eng. 4, 785 (1958). 
2B. WOLFE and D. L. FISCHER, Nucl. Sci. Eng. 5, 5 (1959). 

where 02+ (R) is the average unperturbed adjoint thermal 
flux around the control-rod surface. 

Wolfe and Fischer find that C ( l ) can be identified as the 
Hurwitz-Roe3 absorption area C. In addition, they find 

C ( 2 ) = C (1 - a) , (6) 

where a is small for r > > ! / 2 . 
Frequently4 the calculation of the reactivity worth of a 

regular array of control rods, fully inserted in a finite 
reactor, can be reduced to the calculation of the worth of a 
control rod situated at the axis of a circular cylindrical 
cell, where the dimensions of the cell are such that the flux 
gradients vanish at the cell outer boundary. 

Let us apply the methods of Wolfe and Fischer to 
determine the worth of a control rod in the cylindrical 
cell. During iteration n the fast flux 0 i (""1 ) is to be found 
from 02 > 

- TV20 

using 

( w - l ) , (n-i) in- l) 
(7) 

Integrating both sides of Eq. (7) over v} the volume between 
the control-rod surface and the cell outer boundary, and 
making use of Gauss's theorem, we find 

Y V " - 1 ' * = S s<* 
dv (8) 

where we have used the boundary conditions of zero fast 
flux gradient at the control-rod surface and at the cell 
outer boundary. 

The thermal flux 02(w) is now to be found from 

2 = ^ r - 0i 
^a 2 

-L2 v2 </>2(B) + O) 

Integrating both sides of Eq. (9) over v and again using 
Gauss's theorem 

- £ 2 / V „ + J ^ n ) d v = fa1' n-1) dv, (10) 

where we have used the boundary condition of zero thermal 
flux gradient at the cell outer boundary. 

Now, the unperturbed cell is just critical, so that 

Using Eqs. (4), (8), (10), and (11) we obtain 

f<j*2in) dv = f^"-1* dv - cin) <!>2{0) 

(11) 

(0) Kir*" ' ] • 
Eq. (5) becomes 
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3H. HURWITZ and G. ROE, J. Nucl. Energy 2, 85 (1955). 
4P. GREEBLER, Nucl. Sci. Eng. 3, 445 (1958). 
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Applying Wolfe and Fischer's Eq. (26), Ref. 1, and Eq. (8), 
Ref. 2, directly to the case of the rod in the cell, we obtain 

vZf 

bv in) 

V-C 
n = 1 and 2 (14) 

Thus Eq. (8), Ref. 2, is algebraically incorrect. 
For reactors where r » L2, the first-order theory, with 

its assumption of a flat epithermal flux in the cell, can be 
expected to be quite accurate. Thus for r » L2, 5vll) from 
Eq. (13) (or (14)) is close to the correct result. 

Now, for T » L 2 , Wolfe and Fischer find that C ( 2 ) is 
closely equal to C ( 1 ) so that, whereas from Eq. (14), the 
process might appear to be converging, it is in fact, from 
Eq. (13), diverging from the correct result. 

The divergence is not due to any inaccuracies in Eq.(13) 
but to Wolfe and Fischer's approximations made in deter-
mining C{n). To find the flux distributions and therefore 
Cin), Wolfe and Fischer disregard the boundary conditions 
at the reactor outer boundary or, in this case, at the cell 
outer boundary, during the iteration process. In solving 
Eqs. (2) and (3), Wolfe and Fischer retain only the Bessel 
functions Kn, thus allowing the perturbed flux to approach 
the unperturbed flux at infinite radius. 

If the iteration process were continued, the flux shape 
would converge to the flux around a control rod situated in 
an infinite medium. That is, the fluxes would converge to 

= A 

where 
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with the constant A normalized so that </>i' and fa' approach 
the unperturbed fluxes as r approaches infinity. 

For the case of a finite reactor, and especially for the 
case r » L2, the converged shape from Eqs. (15) and (16) is 
nothing like the actual shape of the perturbed flux. Thus 
for r » L 2 , where the fluxes after the first iteration are 
the correct fluxes, the fluxes after subsequent iterations in 
converging to the solutions (15) and (16), are in fact 
diverging from the correct solution. 

An attempt to justify Eq. (14) might be made on the 
grounds that, at least for r » L 2 , it gives closely the 
correct answer for iterations 1 and 2. However, if the 
iterations are continued past number 2, we see from 
Eqs. (15) and (16) that finally we obtain flux distributions, 
which are zero at finite radius but which tend to the 
unperturbed flux at infinite radius. Thus from Eq. (4), 
C (00) is zero and from Eq. (14), Si/00* is zero. 

To conclude, although the first-order perturbation theory 
by Wolfe and Fischer is valuable for predicting the worth 
of control rods in reactors where T >>> L2, the second-order 
theory can produce inaccurate results, particularly for 
reactors where r » I / 2 . For reactors where r is not much 
greater than L2, the use of the theory to any order does not 
appear to be justifiable, since, without prior knowledge of 
the actual form of the perturbed flux, one has no means of 
determining the iteration number n that will produce (j)2(n) 

that is closest to the actual 
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