
Letters to the Editor 

Comment on the Drift-Flux Approximat ion 
in Transient Two-Phase Flows 

INTRODUCTION 

The drift-flux approximation to two-fluid, two-phase flows 
is examined in light of recent attempts to extend it to multi-
dimensions. It is found that inconsistent approximations may 
result in anomalous results. 

A recent paper by Travis et al.1 presented a derivation of 
the drift-flux approximation to the two-fluid, two-phase flow 
equations useful for multidimensional flows. This is perhaps 
the first literature publication to do so, although an earlier 
report2 presented a relative velocity expression for use in their 
two-dimensional computer program. The purpose of this 
Letter is to briefly examine the drift-flux theory to place the 
approximation in perspective. The approximate drift-flux 
momentum field equations developed by Travis et al.1 are 
analyzed and found to predict an anomalous result. 

ANALYSIS 

The bases of the drift-flux field equations were examined 
by Lyczkowski, who showed explicitly what simplifying 
assumptions are made in obtaining the generally accepted3"5 

transient, one-dimensional drift-flux model of two-phase flow 
from the two-fluid or separated flow model.6 Sometimes 
referred to as the "diffusion model,"7 the four-equation 
one-dimensional drift-flux model field equations presented by 
Wulff et al.,5 consisting of conservation of mixture mass, vapor 
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mass, and mixture momentum and energy, were shown to be 
algebraically equivalent to the two-fluid model. The assump-
tion of limited thermal equilibrium (vapor or liquid saturated) 
allows one energy equation to be dropped. Except for slightly 
different notation and structure, these differential equations 
agree with those written by Hirt and Romero2 in one dimen-
sion. 

Although the form and notation used differ from one 
author to another, they all have in common a mixture mo-
mentum equation similar to Eq. (21) of Ref. 1. This mixture 
momentum equation is normally written in terms of the 
relative velocity or in terms of the drift velocity (using the 
notation of Ref. 1 in one dimension) as 

dt ^ P ' u + i x p t U ' U t ) 

where Vfj is the drift velocity, defined as3'4 

Vf, = u f - i . (2) 

Here, jf is the volumetric flux (or superficial velocity) of the 
fluid phase, defined as 

if=0uf , (3) 

and / is the volumetric average velocity, defined as 

/ =// +ip = Buf + (1 - 0)up = Q . (4) 

The 
term Q is the volumetric flow, and A is the area. The 

relative velocity is related to the drift velocity by 
uf - u„ 

V f j = - L
T

J L = S{\-e) , (5) 

where S is the relative velocity. 
The drift velocity is then measured and correlated by 

purely algebraic expressions3'8 and replaces the second con-
stituent momentum equation. Zuber and Staub,3'8 for exam-
ple, give the general expression for the drift flux for vertical 
dispersed flow as 

vf/ = vOB(i-er • (6) 

Starting with a representative set of two-fluid equations, 
Lyczkowski6 showed that a general form of the transient 
velocity difference equation is given by 

8NOVAK ZUBER and F. W. STAUB, Nucl. Sci. Eng., 30, 268 
(1967). 



S = 
AeiBgi 

r 3 / / a / 
\p'dtVx+PlVxYxVx~' 3/ PgV* dx 

+ a . 
AwiBwi 

AgiBg, ' 

aim 

Oil 

(0 - vg
x) + 

•<4 \vgBWg 

AgiBgi 
OLgOLl 

vi +=r 

(P* Pl)Sx • 

(v •vie) 

AglBgi x A^Bg, 

The terms in brackets in Eq. (7) above represent acceleration. 
The remaining terms account for wall friction of the phases, 
momentum transfer caused by mass transfer, and gravity. An 
association with the notation of Travis et al.1 can be made 
with the following equivalences: 
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Equation (7), with all terms on the right side dropped except 
the last one, is the theoretical basis of all of the empirical 
vapor drift velocity expressions, including Eq. (6) above. 
Acceptable vapor drift velocity correlations are presently only 
available for steady-state gravity-dominated flow in vertical 
ducts.9 

An alternative but completely equivalent expression for 
the transient velocity difference can be obtained as10'11 
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In this form, the explicit appearance of the gravity term 
vanishes, but the pressure gradient appears. If all terms in 
Eq. (9) are dropped except the fourth and fifth ones on the 
left side, then the one-dimensional analog of Eq. (A. 10) in 
Ref. 2 or Eq. (23) of Ref. 1 is obtained. This equation should 
properly replace one of the two momentum equations as 

S = 
oticzgipg- Pi) dp 

AigBigP dx 
(10) 

Equation (10) resembles Darcy's law for flow through porous 
media.12 In one dimension, flow regime maps are used to select 
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the AigBig product13 (the K drag function of Refs. 1 and 2). 
For multidimensional flow, both Refs. 1 and 2 assumed 
dispersed-type flow for this drag function. 

Travis et al.1 substitute their analog of Eq. (10) above back 
into the component momentum equations to arrive at (in 
one dimension in their notation) 

(7) 3 Up 
~3T + u„ 3Up 
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and 
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-w+ufte=8*-ytTx • ( 1 2 ) 

This use of the drift-flux approximation is thus seen to be 
quite unlike the usual treatment outlined above. 

Equations (11) and (12) admit a solution that predicts that 
the phases will never move at a relative velocity different from 
the initial value. The following example illustrates this ob-
servation. 

First subtract Eqs. (11) and (12) to obtain 

9 /• ^ j . 9 
dt(uP~uf) + dfc\ ̂  (lip - uf)J = 0 (13) 

Then, assume that the phase velocities differ from each other 
as 

up(x,t) - Uf(x,t) = k , (14) 

where k is an arbitrary constant to be determined. 
Assumption (14) together with Eq. (13) implies that Uf 

and Up are at most functions of time of the form 

uf(t)=f\(t) , (15) 

up{t)^k+f,{t) . (16) 

Apply the initial conditions consistent with Eq. (14) as 

« / (0 )= / , (0 ) , (17) 

« p (0 ) = fc+/,(0) . (18) 

Then, k is obtained as 

k - up(0) - Uf(0) , (19) 
which implies that 

uf(x,t)-up(x,t) = up(0)-uf(0) . (20) 
Since k was picked to be arbitrary, Eq. (20) holds for all 
constant values. Thus, the original assumption is not contra-
dicted, and the phases never move at a relative velocity other 
than that prescribed at zero time. 

NOMENCLATURE 

Agi = surface area between vapor and liquid phase per unit 
volume 

Awa = surface area of phase a on contact with the wall per 
unit volume 

Bgi = friction coefficient between vapor and liquid phases 

13C. W. SOLBRIG, J. H. McFADDEN, R. W. LYCZKOWSKI, and 
E. D. HUGHES, "Heat Transfer and Friction Correlations Required to 
Describe Steam-Water Behavior in Nuclear Safety Studies," Heat Trans-
fer: Research and Application, AIChE Symp. Series No. 174, 74, 100, 
American Institute of Chemical Engineers, New York (1978). 
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= stationary form and viscous drag between wall and 
phase a 

= axial component of acceleration due to gravity 

= mixture volumetric flux = jf + jp = QjA 

= volumetric flow of phase / 

= volumetric flow of phase p 

= rate of vapor generation per unit volume 

= thermodynamic pressure 

= slip velocity = uf - vl
x = Uf - up 

= velocity of phase a 

= mixture velocity = [BpfUf + (1 - 6)ppup]lpt 

= vapor drift velocity = « / - / = 5(1 - 6) = 5a; 

= velocity of phase a 

= intrinsic velocity 

= terminal velocity 

= volume fraction of phase a (a; = 1 -

= mixture density = ctgpg + a/p; = pt 

= thermodynamic density of phase a 

= a r 

1 - 9 = a; 

This work was performed under the auspices of the U.S. Department 
of Energy by the Lawrence Livermore Laboratory. 

Robert W. Lyczkowski 

Lawrence Livermore Laboratory 
P.O. Box 808 

Livermore, California 94550 

March 12, 1979 

Reply to "Comment on the Drif t -Flux 
Approximat ion in Transient 

Two-Phase Flows" 
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Using the well-known "method of Lagrange," we are able to 
derive a general solution for Eq. (4). 

Associated with Eq. (4) is the system of first-order ordi-
nary differential equations: 

dx -
1F = U 

du dUr _ 

(5) 

(6) 
U Ur 

The solution for Eq. (6) is 

uur = c, . (7) 

If we assume that the phase velocities differ from each other as 

ur=f(x,t) , (8) 

where f(x,t) is a nonzero arbitrary function of x and t, then 
from Eq. (7), we have 

u = 7-L-=g{x,t) . (9) 
fix, t) 

The solution for Eq. (5) is then given by 

h(x,t) = c2 , (10) 

and the general solution for the system of Eqs. (5) and (6) is 
therefore 

uur = H[h(x,t)] . (11) 
Since Eq. (11) is the general solution of Eq. (4) and our as-
sumption ur = f(x, t) has not led to a contradiction, the phases 
can move with a relative velocity that is dependent on both 
space and time. 

J. R. Travis 
W. C. Rivard 

F. H. Harlow 

University of California 
Los Alamos Scientific Laboratory 
Theoretical Division 
Los Alamos, New Mexico 87545 

April 9 ,1979 

Consider the Lyczkowski1 Eq. (13) for the relative velocity 
between phases: 

If we let 

and 

^ { u p - u f ) + ̂ ( 4 - u } ) ^ =0 , 

Ur = Up - Uf 

_ Up + Uf 

then Eq. (13) can be rewritten as 

9Ur _9_ 

dt +9x 
9ur d , n + — {uru) = 0 

(13) 

(1) 

(2) 

(3) 

Comments on Neutron-Induced Fission in 
a Compressed DT-Pu Plasma 

Recently, Perkins1 published two interesting papers about 
the problem of neutron-induced fission in a compressed 
plasma composed of deuterium-tritium (DT) seeded with a 
small amount of 239Pu. The main idea was to produce knock-
on deuterium and tritium ions by making use of the collisional 
energy transfer of the kinetic energy of the fission fragments 
as they slow down to thermal energies. These suprathermal 
ions, possessing an average energy of ~5 kT, exhibit an in-
creased fusion probability and hence neutron production. The 
latter would then couple directly to the fission process. Thus, 

'ROBERT W. LYCZKOWSKI,Nucl. Sci. Eng.,71, 77 (1979). 'S. T. PERKINS,Nucl. Sci. Eng., 69, 137, 147 (1979). 


